当前位置: X-MOL 学术Adv. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanofabricated Ultraflexible Electrode Arrays for High‐Density Intracortical Recording
Advanced Science ( IF 14.3 ) Pub Date : 2018-03-10 , DOI: 10.1002/advs.201700625
Xiaoling Wei 1 , Lan Luan 1, 2 , Zhengtuo Zhao 1 , Xue Li 1 , Hanlin Zhu 1 , Ojas Potnis 1 , Chong Xie 1
Affiliation  

Understanding brain functions at the circuit level requires time‐resolved simultaneous measurement of a large number of densely distributed neurons, which remains a great challenge for current neural technologies. In particular, penetrating neural electrodes allow for recording from individual neurons at high temporal resolution, but often have larger dimensions than the biological matrix, which induces significant damage to brain tissues and therefore precludes the high implant density that is necessary for mapping large neuronal populations with full coverage. Here, it is demonstrated that nanofabricated ultraflexible electrode arrays with cross‐sectional areas as small as sub‐10 µm2 can overcome this physical limitation. In a mouse model, it is shown that these electrodes record action potentials with high signal‐to‐noise ratio; their dense arrays allow spatial oversampling; and their multiprobe implantation allows for interprobe spacing at 60 µm without eliciting chronic neuronal degeneration. These results present the possibility of minimizing tissue displacement by implanted ultraflexible electrodes for scalable, high‐density electrophysiological recording that is capable of complete neuronal circuitry mapping over chronic time scales.

中文翻译:

纳米制造的超柔性电极阵列,用于高密度皮层内记录

在电路级理解大脑功能需要时间分辨的同时测量大量密集分布的神经元,这对于当前的神经技术仍然是一个巨大的挑战。特别是,穿透性神经电极允许以高时间分辨率从单个神经元进行记录,但其尺寸通常比生物基质大,这会对脑组织造成重大损害,因此排除了用较大的神经元种群作图所必需的高植入物密度。完全覆盖。在此证明,纳米制造的超柔性电极阵列的横截面面积小于10 µm 2可以克服这一物理限制。在小鼠模型中,表明这些电极记录了具有高信噪比的动作电位。它们的密集阵列允许空间过采样;并且他们的多探针植入技术允许在60 µm的探针间距,而不会引起慢性神经元变性。这些结果表明,通过可伸缩的,高密度电生理记录的植入超柔性电极,可以最大限度地减少组织移位,这种记录能够在慢性时标上完成神经元电路的完整映射。
更新日期:2018-03-10
down
wechat
bug