当前位置: X-MOL 学术Combust. Flame › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An experimental and modeling study on the low temperature oxidation of surrogate for JP-8 part II: Comparison between neat 1,3,5-trimethylbenzene and its mixture with n-decane
Combustion and Flame ( IF 5.8 ) Pub Date : 2018-03-10
Bing-Yin Wang, Yue-Xi Liu, Jun-Jie Weng, Guan-Fu Pan, Zhen-Yu Tian

The low temperature oxidation of neat 1,3,5-trimethylbenzene (T135MB) and n-decane/T135MB mixture as a surrogate for JP-8 has been investigated in a jet-stirred reactor over the temperature range of 500–1100 K at atmospheric pressure under fuel-rich condition with residence time from 2.33 to 1.06 s. Mole fraction profiles of 29 intermediates including light hydrocarbons, oxygenated and aromatic compounds were identified by gas chromatographic techniques. In general, the concentrations of intermediates tend to increase progressively with temperature from 925 K in neat T135MB oxidation, while these species exhibit bimodal distributions from 550 K in the oxidation of n-decane/T135MB mixture (surrogate). By considering the calculated rate constants of T135MB and analogous coupling reactions between T135MB and n-decane, a detailed kinetic mechanism involving 910 species and 5329 reactions was established with a reasonable agreement with the experimental results. The low temperature chemistry of T135MB and surrogate was analyzed including the NTC behavior below 800 K. The oxidation process of T135MB is occurring mainly by H-abstraction with OH radical and subsequent reactions. The difference is that in the NTC region H-abstraction by OH radicals is the major consumption pathway for T135MB in the surrogate. But for neat T135MB, the dominant channels change to the H-abstractions by H-atoms, OH and CH3 radicals. Addition of n-decane can promote the oxidation of T135MB by providing OH radicals in the low temperature oxidation of surrogate fuel. Moreover, the model was also validated against the experimental data on n-decane and JP-8 combustion, including species profiles in low temperature jet-stirred reactor oxidation and high temperature flow reactor pyrolysis as well as ignition delay times. These extended results yielded overall satisfactory agreement, and will benefit for further application of practical JP-8 fuels, particularly for their combustion properties at wide temperature range.



中文翻译:

JP-8替代品低温氧化的实验和模型研究:纯1,3,5-三甲基苯及其与正癸烷的混合物的比较

在常压下,在500-1100 K的射流搅拌反应器中,研究了纯净的1,3,5-三甲基苯(T135MB)和正癸烷/ T135MB混合物作为JP-8的低温氧化反应富油条件下的最大压力,停留时间为2.33到1.06 s。通过气相色谱技术鉴定了包括轻烃,氧化和芳族化合物在内的29种中间体的摩尔分数分布。通常,在纯T135MB氧化中,中间体的浓度往往随温度从925 K开始逐渐增加,而在正癸烷/ T135MB混合物(替代物)的氧化中,这些物种显示出自550 K的双峰分布。考虑到计算出的T135MB的速率常数以及T135MB与正癸烷之间的类似偶联反应,建立了涉及910个物种和5329个反应的详细动力学机制,并与实验结果合理地吻合。分析了T135MB和替代物的低温化学性质,包括在800 K以下的NTC行为。T135MB的氧化过程主要是通过OH自由基的氢吸收和随后的反应而发生的。区别在于,在NTC区域中,OH基对H的吸收是替代物中T135MB的主要消耗途径。但是对于纯净的T135MB,主要通道通过H原子,OH和CH变为H-抽象 T135MB的氧化过程主要是通过与OH自由基的H吸收和随后的反应而发生的。不同之处在于,在NTC区域中,OH基对H的吸收是替代物中T135MB的主要消耗途径。但是对于纯净的T135MB,主要通道通过H原子,OH和CH变为H-抽象 T135MB的氧化过程主要是通过与OH自由基的H吸收和随后的反应而发生的。不同之处在于,在NTC区域中,OH基对H的吸收是替代物中T135MB的主要消耗途径。但是对于纯净的T135MB,主要通道通过H原子,OH和CH变为H-抽象3个部首。正癸烷的添加可以通过在替代燃料的低温氧化中提供OH自由基来促进T135MB的氧化。此外,该模型还针对正癸烷和JP-8燃烧的实验数据进行了验证,包括低温喷射搅拌反应器氧化和高温流动反应器热解中的物种分布以及点火延迟时间。这些扩展的结果获得了总体上令人满意的协议,并将有益于实用JP-8燃料的进一步应用,特别是其在宽温度范围内的燃烧性能。

更新日期:2018-03-11
down
wechat
bug