当前位置: X-MOL 学术ACS Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Core–Shell Fe1–x[email protected]2.9PS3.95Se0.05 Nanorods for Room Temperature All-Solid-State Sodium Batteries with High Energy Density
ACS Nano ( IF 15.8 ) Pub Date : 2018-03-08 00:00:00 , DOI: 10.1021/acsnano.8b00073
Hongli Wan 1, 2 , Jean Pierre Mwizerwa 1, 2 , Xingguo Qi 2, 3 , Xin Liu 1 , Xiaoxiong Xu 1 , Hong Li 3 , Yong-Sheng Hu 2, 3 , Xiayin Yao 1
Affiliation  

High ionic conductivity electrolyte and intimate interfacial contact are crucial factors to realize high-performance all-solid-state sodium batteries. Na2.9PS3.95Se0.05 electrolyte with reduced particle size of 500 nm is first synthesized by a simple liquid-phase method and exhibits a high ionic conductivity of 1.21 × 10–4 S cm–1, which is comparable with that synthesized with a solid-state reaction. Meanwhile, a general interfacial architecture, that is, Na2.9PS3.95Se0.05 electrolyte uniformly anchored on Fe1–xS nanorods, is designed and successfully prepared by an in situ liquid-phase coating approach, forming core–shell structured Fe1–x[email protected]2.9PS3.95Se0.05 nanorods and thus realizing an intimate contact interface. The Fe1–x[email protected]2.9PS3.95Se0.05/Na2.9PS3.95Se0.05/Na all-solid-state sodium battery demonstrates high specific capacity and excellent rate capability at room temperature, showing reversible discharge capacities of 899.2, 795.5, 655.1, 437.9, and 300.4 mAh g–1 at current densities of 20, 50, 100, 150, and 200 mA g–1, respectively. The obtained all-solid-state sodium batteries show very high energy and power densities up to 910.6 Wh kg–1 and 201.6 W kg–1 based on the mass of Fe1–xS at current densities of 20 and 200 mA g–1, respectively. Moreover, the reaction mechanism of Fe1–xS is confirmed by means of ex situ X-ray diffraction techniques, showing that partially reversible reaction occurs in the Fe1–xS electrode after the second cycle, which gives the obtained all-solid-state sodium battery an exceptional cycling stability, exhibiting a high capacity of 494.3 mAh g–1 after cycling at 100 mA g–1 for 100 cycles. This contribution provides a strategy for designing high-performance room temperature all-solid-state sodium battery.

中文翻译:

核-壳铁1x [受电子邮件保护] 2.9 PS 3.95 Se 0.05纳米棒,用于室温全固态高能量密度钠电池

高离子电导率电解质和紧密的界面接触是实现高性能全固态钠电池的关键因素。Na 2.9 PS 3.95 Se 0.05电解质(其减小的粒径为500 nm)首先通过简单的液相方法合成,并具有1.21×10 –4 S cm –1的高离子电导率,与固体合成的电导率相当态反应。同时,设计并成功地制备了一种通用的界面结构,即均匀地锚定在Fe 1– x S纳米棒上的Na 2.9 PS 3.95 Se 0.05电解质液相涂覆法,形成核-壳结构的Fe 1 - x [受电子邮件保护] 2.9 PS 3.95 Se 0.05纳米棒,从而实现紧密的接触界面。Fe 1– x [受电子邮件保护] 2.9 PS 3.95 Se 0.05 / Na 2.9 PS 3.95 Se 0.05 / Na全固态钠电池在室温下显示出高比容量和出色的倍率性能,显示出899.2、795.5的可逆放电容量,655.1、437.9和300.4 mAh g –1,电流密度为20、50、100、150和200 mA g –1, 分别。将获得的全固态钠电池表现出非常高的能量和功率密度高达910.6瓦千克-1和201.6公斤w ^ -1基于Fe的质量1- X S中的20和200毫安克电流密度-1, 分别。此外,通过异位X射线衍射技术证实了Fe 1– x S的反应机理,表明Fe 1– x S电极在第二个循环后发生了部分可逆的反应,从而获得了全固态状态钠电池具有出色的循环稳定性,在以100 mA g循环后表现出494.3 mAh g –1的高容量–1表示100个周期。该贡献为设计高性能室温全固态钠电池提供了策略。
更新日期:2018-03-08
down
wechat
bug