当前位置: X-MOL 学术Adv. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Growth of MoS2–MoO3 Hybrid Microflowers via Controlled Vapor Transport Process for Efficient Gas Sensing at Room Temperature
Advanced Materials Interfaces ( IF 4.3 ) Pub Date : 2018-03-08 , DOI: 10.1002/admi.201800071
Rahul Kumar 1 , Neeraj Goel 1 , Monu Mishra 2 , Govind Gupta 2 , Mattia Fanetti 3 , Matjaz Valant 3, 4 , Mahesh Kumar 1
Affiliation  

A nucleation controlled one‐step process to synthesize MoS2–MoO3 hybrid microflowers using vapor transport process and its application in efficient NO2 sensing at room temperature are reported. The morphology and crystal structure of the microflowers are characterized by scanning electron microscope (SEM), Raman, X‐ray diffraction (XRD), and X‐ray photoelectron spectroscopy techniques. A cathodoluminence mapping reveals that the core of the microflower consists of MoO3, and the flower petals as well as nanosheet are composed of a few layers of MoS2. Further, the MoS2–MoO3 hybrid microflower sensor exhibits a high sensitivity of ≈33.6% with a complete recovery to 10 ppm NO2 at room temperature without any extra stimulus like optical or thermal source. Unlike many earlier reports on MoS2 sensor, this advanced approach shows that the sensor is exhibited a low response time (≈19 s) with complete recovery at room tepmerature and excellent selectivity toward NO2 against various other gases. The efficient conventional sensing of the sensor is attributed to a combination of high hole injection from MoO3 to MoS2 and modulation of a potential barrier at MoS2–MoO3 interface during adsorption/desorption of NO2. It is believed that the modified properties of MoS2 by such composite could be used for various advanced device applications.

中文翻译:

MoS2-MoO3杂种小花的生长通过可控的蒸气传输过程实现,以便在室温下有效地进行气体感测

报道了一种采用成核控制的一步法利用蒸气传输法合成MoS 2 -MoO 3杂种微花,并将其应用于室温下有效的NO 2感测。通过扫描电子显微镜(SEM),拉曼光谱,X射线衍射(XRD)和X射线光电子能谱技术表征了微花的形态和晶体结构。阴极发光图表明,微花的核心由MoO 3组成,花瓣和纳米片由几层MoS 2组成。此外,MoS 2 –MoO 3混合型微花传感器表现出约33.6%的高灵敏度,在室温下可完全恢复至10 ppm NO 2,而没有任何额外的刺激,如光学或热源。与许多早期关于MoS 2传感器的报道不同,这种先进的方法表明该传感器表现出较低的响应时间(≈19s),在室温下完全恢复,并且对各种其他气体对NO 2的选择性极好。传感器的高效常规传感归因于从MoO 3到MoS 2的高空穴注入以及在NO 2的吸附/解吸过程中在MoS 2 -MoO 3界面上势垒的调制。相信通过这种复合物对MoS 2的改性性质可以用于各种先进的装置应用中。
更新日期:2018-03-08
down
wechat
bug