当前位置: X-MOL 学术Macromol. Rapid Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Aerogels Derived from Polymer Nanofibers and Their Applications
Macromolecular Rapid Communications ( IF 4.2 ) Pub Date : 2018-03-08 , DOI: 10.1002/marc.201700724
Zhenchao Qian 1 , Zhen Wang 1 , Ning Zhao 1 , Jian Xu 1
Affiliation  

Aerogels are gels in which the solvent is supplanted by air while the pores and networks are largely maintained. Owing to their low bulk density, high porosity, and large specific surface area (SSA), aerogels are promising for many applications. Various inorganic aerogels, e.g., silica aerogels, are intensively studied. However, the mechanical brittleness of common inorganic aerogels has seriously restricted their applications. In the past decade, nanofibers have been developed as building blocks for the construction of aerogels to improve their mechanical property. Unlike traditional frameworks constructed by interconnected particles, nanofibers can form chemically cross‐linked and/or physically entangled 3D skeletons, thus showing flexibility instead of brittleness. Therefore, excellent elasticity and toughness, ultralow density, high SSA, and tunable chemical composition can be expected for the polymer nanofiber‐derived aerogels (PNAs). In this review, recent research progress in the fabrication, properties, and applications of PNAs is summarized. Various nanofibers, including nanocelluloses, nanochitins, and electrospun nanofibers are included, as well as carbon nanofibers from the corresponding organic precursors. Typical applications in supercapacitors, electrocatalysts for oxygen reduction reaction, flexible electrodes, oil absorbents, adsorbents, tissue engineering, stimuli‐responsive materials, and catalyst carriers, are presented. Finally, the challenges and future development of PNAs are discussed.

中文翻译:

聚合物纳米纤维衍生的气凝胶及其应用

气凝胶是一种凝胶,其中的溶剂被空气取代,同时很大程度上保持了孔和网状结构。由于其低的堆积密度,高的孔隙率和较大的比表面积(SSA),气凝胶有望用于许多应用。广泛地研究了各种无机气凝胶,例如二氧化硅气凝胶。但是,普通无机气凝胶的机械脆性严重限制了它们的应用。在过去的十年中,已开发出纳米纤维作为气凝胶构造的基石,以改善其机械性能。与由相互连接的粒子构成的传统框架不同,纳米纤维可以形成化学交联和/或物理缠结的3D骨架,从而显示出柔韧性而不是脆性。因此,优异的弹性和韧性,超低密度,高SSA,聚合物纳米纤维衍生的气凝胶(PNA)的化学组成可以预期。在这篇综述中,总结了PNA的制造,性能和应用方面的最新研究进展。包括各种纳米纤维,包括纳米纤维素,纳米壳多糖和电纺纳米纤维,以及来自相应有机前体的碳纳米纤维。介绍了超级电容器,用于氧还原反应的电催化剂,柔性电极,吸油剂,吸附剂,组织工程,刺激响应材料和催化剂载体的典型应用。最后,讨论了PNA的挑战和未来发展。总结了PNA的应用。包括各种纳米纤维,包括纳米纤维素,纳米壳多糖和电纺纳米纤维,以及来自相应有机前体的碳纳米纤维。介绍了超级电容器,用于氧还原反应的电催化剂,柔性电极,吸油剂,吸附剂,组织工程,刺激响应材料和催化剂载体的典型应用。最后,讨论了PNA的挑战和未来发展。总结了PNA的应用。包括各种纳米纤维,包括纳米纤维素,纳米壳多糖和电纺纳米纤维,以及来自相应有机前体的碳纳米纤维。介绍了超级电容器,用于氧还原反应的电催化剂,柔性电极,吸油剂,吸附剂,组织工程,刺激响应材料和催化剂载体的典型应用。最后,讨论了PNA的挑战和未来发展。介绍了组织工程,刺激反应材料和催化剂载体。最后,讨论了PNA的挑战和未来发展。介绍了组织工程,刺激反应材料和催化剂载体。最后,讨论了PNA的挑战和未来发展。
更新日期:2018-03-08
down
wechat
bug