当前位置: X-MOL 学术ACS Photonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Anapole-Assisted Strong Field Enhancement in Individual All-Dielectric Nanostructures
ACS Photonics ( IF 6.5 ) Pub Date : 2018-03-07 00:00:00 , DOI: 10.1021/acsphotonics.7b01440
Yuanqing Yang 1 , Vladimir A. Zenin 1 , Sergey I. Bozhevolnyi 1
Affiliation  

High-index dielectric nanostructures have recently become prominent forefront alternatives for manipulating light at the nanoscale. Their electric and magnetic resonances with intriguing characteristics endow them with a unique ability to strongly enhance near-field effects with minimal absorption. Similar to their metallic counterparts, dielectric oligomers consisting of two or more coupled particles are generally employed to create localized optical fields. Here we show that individual all-dielectric nanostructures, with rational designs, can produce strong electric fields with intensity enhancements exceeding 3 orders of magnitude. Such a striking effect is demonstrated within a Si nanodisk by fully exploiting anapole generation and simultaneously introducing a slot area with high-contrast interfaces. By performing finite-difference time-domain simulations and multipole decomposition analysis, we systematically investigate both far-field and near-field properties of the slotted disk and reveal a subtle interplay among different resonant modes of the system. Furthermore, while electric fields at anapole modes are typically internal, i.e., found inside nanostructures, our slotted configuration generates external hotspots with electric fields additionally enhanced by virtue of boundary conditions. These electric hotspots are thereby directly accessible to nearby molecules or quantum emitters, opening up new possibilities for single-particle enhanced spectroscopies or single-photon emission enhancement due to large Purcell effects. Our presented design methodology is also readily extendable to other materials and other geometries, which may unlock enormous potential for sensing and quantum nanophotonic applications.

中文翻译:

单个全介电纳米结构中的偶极辅助强场增强。

高折射率介电纳米结构近来已成为在纳米级操纵光的最前沿的替代方法。它们具有令人着迷的特性的电和磁共振特性使其具有独特的能力,能够以最小的吸收力显着增强近场效应。类似于它们的金属对应物,通常使用由两个或多个耦合粒子组成的介电低聚物来产生局部光场。在这里,我们显示该个人具有合理设计的全介电纳米结构可以产生强度超过3个数量级的强电场。通过充分利用偶极子产生并同时引入具有高对比度界面的缝隙区域,可以在Si纳米盘中展示出这种惊人的效果。通过执行有限差分时域仿真和多极分解分析,我们系统地研究了开槽磁盘的远场和近场特性,并揭示了系统不同共振模式之间的微妙相互作用。此外,虽然偶极模式下的电场通常是内部的,即在纳米结构内部,但我们的开槽配置会产生外部借助边界条件进一步增强了具有电场的热点。这些电热点因此可以直接被附近的分子或量子发射器访问,由于大的赛尔效应,为单粒子增强的光谱学或单光子发射增强开辟了新的可能性。我们提出的设计方法还可以很容易地扩展到其他材料和其他几何形状,这可能会为传感和量子纳米光子应用释放出巨大的潜力。
更新日期:2018-03-07
down
wechat
bug