当前位置: X-MOL 学术J. Hepatol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Gut microbiota mediates diurnal variation of acetaminophen induced acute liver injury in mice
Journal of Hepatology ( IF 26.8 ) Pub Date : 2018-07-01 , DOI: 10.1016/j.jhep.2018.02.024
Shenhai Gong , Tian Lan , Liyan Zeng , Haihua Luo , Xiaoyu Yang , Na Li , Xiaojiao Chen , Zhanguo Liu , Rui Li , Sanda Win , Shuwen Liu , Hongwei Zhou , Bernd Schnabl , Yong Jiang , Neil Kaplowitz , Peng Chen

BACKGROUND & AIMS Acetaminophen (APAP) induced hepatotoxicity is a leading cause of acute liver failure worldwide. It is well established that the liver damage induced by acetaminophen exhibits diurnal variation. However, the detailed mechanism for the hepatotoxic variation is not clear. Herein, we aimed to determine the relative contributions of gut microbiota in modulating the diurnal variation of hepatotoxicity induced by APAP. METHODS Male Balb/C mice were treated with or without antibiotics and a single dose of orally administered APAP (300 mg/kg) at ZT0 (when the light is on-start of resting period) and ZT12 (when the light is off-start of active period). RESULTS In agreement with previous findings, hepatic injury was markedly enhanced at ZT12 compared with ZT0. Interestingly, upon antibiotic treatment, ZT12 displayed a protective effect against APAP hepatotoxicity similar to ZT0. Moreover, mice that received the cecal content from ZT12 showed more severe liver damage than mice that received the cecal content from ZT0. 16S sequencing data revealed significant differences in the cecal content between ZT0 and ZT12 in the compositional level. Furthermore, metabolomic analysis showed that the gut microbial metabolites were also different between ZT0 and ZT12. Specifically, the level of 1-phenyl-1,2-propanedione (PPD) was significantly higher at ZT12 than ZT0. Treatment with PPD alone did not cause obvious liver damage. However, PPD synergistically enhanced APAP-induced hepatic injury in vivo and in vitro. Finally, we found Saccharomyces cerevisiae, which could reduce intestinal PPD levels, was able to markedly alleviate APAP-induced liver damage at ZT12. CONCLUSIONS The gut microbial metabolite PPD was responsible, at least in part, for the diurnal variation of hepatotoxicity induced by APAP by decreasing glutathione levels. LAY SUMMARY Acetaminophen (APAP) induced acute liver failure because of over dose is a leading public health problem. APAP-induced liver injury exhibits diurnal variation, specifically APAP causes more severe liver damage when taken at night compared with in the morning. Herein, we showed that gut microbial metabolite, 1-phenyl-1,2-propanedione is involved in the rhythmic hepatotoxicity induced by APAP, by depleting hepatic glutathione (an important antioxidant) levels. Our data suggest gut microbiota may be a potential target for reducing APAP-induced acute liver injury.

中文翻译:

肠道菌群介导对乙酰氨基酚致小鼠急性肝损伤的昼夜变化

背景和目的 对乙酰氨基酚 (APAP) 诱导的肝毒性是全球急性肝衰竭的主要原因。众所周知,对乙酰氨基酚引起的肝损伤表现出昼夜变化。然而,肝毒性变异的详细机制尚不清楚。在此,我们旨在确定肠道微生物群在调节 APAP 诱导的肝毒性昼夜变化中的相对贡献。方法 使用或不使用抗生素治疗雄性 Balb/C 小鼠,并在 ZT0(当灯处于休息期开始时)和 ZT12(当灯关闭时)口服单剂量 APAP(300 mg/kg)活跃期)。结果 与先前的发现一致,与 ZT0 相比,ZT12 的肝损伤显着增强。有趣的是,在抗生素治疗后,ZT12 显示出与 ZT0 相似的对 APAP 肝毒性的保护作用。此外,接受 ZT12 盲肠内容物的小鼠比接受 ZT0 盲肠内容物的小鼠表现出更严重的肝损伤。16S 测序数据显示,ZT0 和 ZT12 之间的盲肠含量在组成水平上存在显着差异。此外,代谢组学分析表明,ZT0 和 ZT12 之间的肠道微生物代谢物也不同。具体而言,ZT12 的 1-苯基-1,2-丙二酮 (PPD) 水平显着高于 ZT0。单独使用 PPD 治疗不会引起明显的肝损伤。然而,PPD 在体内和体外协同增强 APAP 诱导的肝损伤。最后,我们发现了可以降低肠道 PPD 水平的酿酒酵母,能够在 ZT12 显着减轻 APAP 诱导的肝损伤。结论 肠道微生物代谢物 PPD 至少部分是导致 APAP 通过降低谷胱甘肽水平引起的肝毒性的昼夜变化的原因。概述 对乙酰氨基酚 (APAP) 因过量服用引起的急性肝功能衰竭是一个主要的公共卫生问题。APAP 引起的肝损伤表现出昼夜变化,特别是与早晨相比,夜间服用 APAP 会导致更严重的肝损伤。在此,我们表明肠道微生物代谢物 1-苯基-1,2-丙二酮通过消耗肝谷胱甘肽(一种重要的抗氧化剂)水平参与 APAP 诱导的节律性肝毒性。我们的数据表明肠道微生物群可能是减少 APAP 诱导的急性肝损伤的潜在目标。结论 肠道微生物代谢物 PPD 至少部分是导致 APAP 通过降低谷胱甘肽水平引起的肝毒性的昼夜变化的原因。概述 对乙酰氨基酚 (APAP) 因过量服用引起的急性肝功能衰竭是一个主要的公共卫生问题。APAP 引起的肝损伤表现出昼夜变化,特别是与早晨相比,夜间服用 APAP 会导致更严重的肝损伤。在此,我们表明肠道微生物代谢物 1-苯基-1,2-丙二酮通过消耗肝谷胱甘肽(一种重要的抗氧化剂)水平参与 APAP 诱导的节律性肝毒性。我们的数据表明肠道微生物群可能是减少 APAP 诱导的急性肝损伤的潜在目标。结论 肠道微生物代谢物 PPD 至少部分是导致 APAP 通过降低谷胱甘肽水平引起的肝毒性的昼夜变化的原因。概述 对乙酰氨基酚 (APAP) 因过量服用引起的急性肝功能衰竭是一个主要的公共卫生问题。APAP 引起的肝损伤表现出昼夜变化,特别是与早晨相比,夜间服用 APAP 会导致更严重的肝损伤。在此,我们表明肠道微生物代谢物 1-苯基-1,2-丙二酮通过消耗肝谷胱甘肽(一种重要的抗氧化剂)水平参与 APAP 诱导的节律性肝毒性。我们的数据表明肠道微生物群可能是减少 APAP 诱导的急性肝损伤的潜在目标。APAP 通过降低谷胱甘肽水平引起的肝毒性的昼夜变化。概述 对乙酰氨基酚 (APAP) 因过量服用引起的急性肝功能衰竭是一个主要的公共卫生问题。APAP 引起的肝损伤表现出昼夜变化,特别是与早晨相比,夜间服用 APAP 会导致更严重的肝损伤。在此,我们表明肠道微生物代谢物 1-苯基-1,2-丙二酮通过消耗肝谷胱甘肽(一种重要的抗氧化剂)水平参与 APAP 诱导的节律性肝毒性。我们的数据表明肠道微生物群可能是减少 APAP 诱导的急性肝损伤的潜在目标。APAP 通过降低谷胱甘肽水平引起的肝毒性的昼夜变化。概述 对乙酰氨基酚 (APAP) 因过量服用引起的急性肝功能衰竭是一个主要的公共卫生问题。APAP 引起的肝损伤表现出昼夜变化,特别是与早晨相比,夜间服用 APAP 会导致更严重的肝损伤。在此,我们表明肠道微生物代谢物 1-苯基-1,2-丙二酮通过消耗肝谷胱甘肽(一种重要的抗氧化剂)水平参与 APAP 诱导的节律性肝毒性。我们的数据表明肠道微生物群可能是减少 APAP 诱导的急性肝损伤的潜在目标。APAP 引起的肝损伤表现出昼夜变化,特别是与早晨相比,夜间服用 APAP 会导致更严重的肝损伤。在此,我们表明肠道微生物代谢物 1-苯基-1,2-丙二酮通过消耗肝谷胱甘肽(一种重要的抗氧化剂)水平参与 APAP 诱导的节律性肝毒性。我们的数据表明肠道微生物群可能是减少 APAP 诱导的急性肝损伤的潜在目标。APAP 引起的肝损伤表现出昼夜变化,特别是与早晨相比,夜间服用 APAP 会导致更严重的肝损伤。在此,我们表明肠道微生物代谢物 1-苯基-1,2-丙二酮通过消耗肝谷胱甘肽(一种重要的抗氧化剂)水平参与 APAP 诱导的节律性肝毒性。我们的数据表明肠道微生物群可能是减少 APAP 诱导的急性肝损伤的潜在目标。
更新日期:2018-07-01
down
wechat
bug