当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-Performance Microsupercapacitors Based on Bioinspired Graphene Microfibers
ACS Applied Materials & Interfaces ( IF 9.5 ) Pub Date : 2018-03-07 00:00:00 , DOI: 10.1021/acsami.8b01128
Hui Pan , Dawei Wang 1 , Qingfa Peng 2 , Jun Ma 3 , Xin Meng , Yaopeng Zhang 2 , Yuning Ma , Shenmin Zhu , Di Zhang
Affiliation  

The miniaturization of portable electronic devices has fueled the development of microsupercapacitors that hold great potential to complement or even replace microbatteries and electrolytic capacitors. In spite of recent developments taking advantage of printing and lithography, it remains a great challenge to attain a high energy density without sacrificing the power density. Herein, a new protocol mimicking the spider’s spinning process is developed to create highly oriented microfibers from graphene-based composites via a purpose-designed microfluidic chip. The orientation provides the microfibers with an electrical conductivity of ∼3 × 104 S m–1, which leads to a high power density; the energy density is sustained by nanocarbons and high-purity metallic molybdenum disulfide. The microfibers are patterned in-plane to fabricate asymmetric microsupercapacitors for flexible and on-chip energy storage. The on-chip microsupercapacitor with a high pattern resolution of 100 μm delivers energy density up to the order of 10–2 W h cm–3 and retains an ultrahigh power density exceeding 100 W cm–3 in an aqueous electrolyte. This work provides new design of flexible and on-chip asymmetric microsupercapacitors based on microfibers. The unique biomimetic microfluidic fabrication of graphene microfibers for energy storage may also stimulate thinking of the bionic design in many other fields.

中文翻译:

基于生物启发的石墨烯微纤维的高性能微型超级电容器

便携式电子设备的小型化推动了微型超级电容器的发展,微型超级电容器具有补充或什至替代微型电池和电解电容器的巨大潜力。尽管最近利用印刷和光刻技术的发展,在不牺牲功率密度的情况下获得高能量密度仍然是巨大的挑战。在本文中,开发了一种模仿蜘蛛纺纱过程的新协议,以通过专门设计的微流控芯片从基于石墨烯的复合材料中产生高度定向的微纤维。取向使微纤维的电导率为〜3×10 4 S m –1,导致高功率密度;能量密度由纳米碳和高纯度金属二硫化钼维持。将微纤维在平面内进行构图,以制造不对称的微型超级电容器,以实现灵活的片上能量存储。片上微型超级电容器具有100μm的高分辨率图案,可提供高达10 –2 W h cm –3的能量密度,并在水性电解质中保持超过100 W cm –3的超高功率密度。这项工作提供了基于微纤维的柔性,片上不对称微超级电容器的新设计。用于储能的石墨烯微纤维的独特的仿生微流体制造也可能激发许多其他领域对仿生设计的思考。
更新日期:2018-03-07
down
wechat
bug