当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Programmable Self‐Locking Origami Mechanical Metamaterials
Advanced Materials ( IF 27.4 ) Pub Date : 2018-03-07 , DOI: 10.1002/adma.201706311
Hongbin Fang 1 , Shih-Cheng A. Chu 1 , Yutong Xia 1 , Kon-Well Wang 1
Affiliation  

Developing mechanical metamaterials with programmable properties is an emerging topic receiving wide attention. While the programmability mainly originates from structural multistability in previously designed metamaterials, here it is shown that nonflat‐foldable origami provides a new platform to achieve programmability via its intrinsic self‐locking and reconfiguration capabilities. Working with the single‐collinear degree‐4 vertex origami tessellation, it is found that each unit cell can self‐lock at a nonflat configuration and, therefore, possesses wide design space to program its foldability and relative density. Experiments and numerical analyses are combined to demonstrate that by switching the deformation modes of the constituent cell from prelocking folding to postlocking pressing, its stiffness experiences a sudden jump, implying a limiting‐stopper effect. Such a stiffness jump is generalized to a multisegment piecewise stiffness profile in a multilayer model. Furthermore, it is revealed that via strategically switching the constituent cells' deformation modes through passive or active means, the n‐layer metamaterial's stiffness is controllable among 2n target stiffness values. Additionally, the piecewise stiffness can also trigger bistable responses dynamically under harmonic excitations, highlighting the metamaterial's rich dynamic performance. These unique characteristics of self‐locking origami present new paths for creating programmable mechanical metamaterials with in situ controllable mechanical properties.

中文翻译:

可编程自锁折纸机械超材料

开发具有可编程特性的机械超材料是一个新兴的话题,受到了广泛的关注。尽管可编程性主要源于先前设计的超材料的结构多重稳定性,但此处显示,不可折叠的折纸通过其固有的自锁和重新配置功能提供了一个实现可编程性的新平台。通过使用单共线4度顶点折纸细分,可以发现每个单位单元都可以在非平面配置下自锁,因此拥有广阔的设计空间来编程其可折叠性和相对密度。实验和数值分析相结合,证明了通过将组成单元的变形模式从预紧折叠转换为后紧压,其刚度会突然跳动,暗示了限位效应。在多层模型中,这种刚度跳跃被概括为多段分段刚度曲线。此外,揭示了通过策略性地通过被动或主动方式切换组成细胞的变形模式,n层超材料的刚度在2 n个目标刚度值之间是可控的。此外,分段刚度还可以在谐波激励下动态触发双稳态响应,从而突出了超材料的丰富动态性能。自锁折纸的这些独特特性为创建具有原位可控机械性能的可编程机械超材料提供了新途径。
更新日期:2018-03-07
down
wechat
bug