当前位置: X-MOL 学术Space Sci. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Order out of Randomness: Self-Organization Processes in Astrophysics
Space Science Reviews ( IF 9.1 ) Pub Date : 2018-03-01 , DOI: 10.1007/s11214-018-0489-2
Markus J. Aschwanden , Felix Scholkmann , William Béthune , Werner Schmutz , Valentina Abramenko , Mark C. M. Cheung , Daniel Müller , Arnold Benz , Guennadi Chernov , Alexei G. Kritsuk , Jeffrey D. Scargle , Andrew Melatos , Robert V. Wagoner , Virginia Trimble , William H. Green

Self-organization is a property of dissipative nonlinear processes that are governed by a global driving force and a local positive feedback mechanism, which creates regular geometric and/or temporal patterns, and decreases the entropy locally, in contrast to random processes. Here we investigate for the first time a comprehensive number of (17) self-organization processes that operate in planetary physics, solar physics, stellar physics, galactic physics, and cosmology. Self-organizing systems create spontaneous “order out of randomness”, during the evolution from an initially disordered system to an ordered quasi-stationary system, mostly by quasi-periodic limit-cycle dynamics, but also by harmonic (mechanical or gyromagnetic) resonances. The global driving force can be due to gravity, electromagnetic forces, mechanical forces (e.g., rotation or differential rotation), thermal pressure, or acceleration of nonthermal particles, while the positive feedback mechanism is often an instability, such as the magneto-rotational (Balbus-Hawley) instability, the convective (Rayleigh-Bénard) instability, turbulence, vortex attraction, magnetic reconnection, plasma condensation, or a loss-cone instability. Physical models of astrophysical self-organization processes require hydrodynamic, magneto-hydrodynamic (MHD), plasma, or N-body simulations. Analytical formulations of self-organizing systems generally involve coupled differential equations with limit-cycle solutions of the Lotka-Volterra or Hopf-bifurcation type.

中文翻译:

随机性排序:天体物理学中的自组织过程

自组织是耗散非线性过程的一种属性,由全局驱动力和局部正反馈机制控制,与随机过程相比,它创建规则的几何和/或时间模式,并在局部降低熵。在这里,我们首次研究了在行星物理学、太阳物理学、恒星物理学、银河物理学和宇宙学中运作的大量 (17) 自组织过程。自组织系统在从最初的无序系统到有序的准平稳系统的演变过程中,主要通过准周期极限循环动力学,但也通过谐波(机械或旋磁)共振,创造自发的“无序有序”。全局驱动力可能是由于重力、电磁力、机械力(例如,旋转或微分旋转)、热压力或非热粒子的加速度,而正反馈机制通常是不稳定性,例如磁旋转 (Balbus-Hawley) 不稳定性、对流 (Rayleigh-Bénard) 不稳定性、湍流、涡旋引力、磁重联、等离子体凝聚或损失锥不稳定性。天体物理自组织过程的物理模型需要流体动力学、磁流体动力学 (MHD)、等离子体或 N 体模拟。自组织系统的分析公式通常涉及具有 Lotka-Volterra 或 Hopf 分岔类型的极限循环解的耦合微分方程。例如磁旋转 (Balbus-Hawley) 不稳定性、对流 (Rayleigh-Bénard) 不稳定性、湍流、涡流吸引力、磁重联、等离子体凝聚或损失锥不稳定性。天体物理自组织过程的物理模型需要流体动力学、磁流体动力学 (MHD)、等离子体或 N 体模拟。自组织系统的分析公式通常涉及具有 Lotka-Volterra 或 Hopf 分岔类型的极限循环解的耦合微分方程。例如磁旋转 (Balbus-Hawley) 不稳定性、对流 (Rayleigh-Bénard) 不稳定性、湍流、涡流吸引力、磁重联、等离子体凝聚或损失锥不稳定性。天体物理自组织过程的物理模型需要流体动力学、磁流体动力学 (MHD)、等离子体或 N 体模拟。自组织系统的分析公式通常涉及具有 Lotka-Volterra 或 Hopf 分岔类型的极限循环解的耦合微分方程。
更新日期:2018-03-01
down
wechat
bug