当前位置: X-MOL 学术Anal. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Determining the Partial Pressure of Volatile Components via Substrate-Integrated Hollow Waveguide Infrared Spectroscopy with Integrated Microfluidics
Analytical Chemistry ( IF 6.7 ) Pub Date : 2018-03-05 00:00:00 , DOI: 10.1021/acs.analchem.7b04425
Vjekoslav Kokoric 1 , Johannes Theisen 2 , Andreas Wilk 1 , Christophe Penisson 2 , Gabriel Bernard 2 , Boris Mizaikoff 1 , Jean-Christophe P. Gabriel 3
Affiliation  

A microfluidic system combined with substrate-integrated hollow waveguide (iHWG) vapor phase infrared spectroscopy has been developed for evaluating the chemical activity of volatile compounds dissolved in complex fluids. Chemical activity is an important yet rarely exploited parameter in process analysis and control. Access to chemical activity parameters enables systematic studies on phase diagrams of complex fluids, the detection of aggregation processes, etc. The instrumental approach developed herein uniquely enables controlled evaporation/permeation from a sample solution into a hollow waveguide structure and the analysis of the partial pressures of volatile constituents. For the example of a binary system, it was shown that the chemical activity may be deduced from partial pressure measurements at thermodynamic equilibrium conditions. The combined microfluidic-iHWG midinfrared sensor system (μFLUID-IR) allows the realization of such studies in the absence of any perturbations provoked by sampling operations, which is unavoidable using state-of-the-art analytical techniques such as headspace gas chromatography. For demonstration purposes, a water/ethanol mixture was investigated, and the derived data was cross-validated with established literature values at different mixture ratios. Next to perturbation-free measurements, a response time of the sensor <150 s (t90) at a recovery time <300 s (trecovery) has been achieved, which substantiates the utility of μFLUID-IR for future process analysis-and-control applications.

中文翻译:

通过带集成微流控技术的基质集成空心波导红外光谱法测定挥发性组分的分压

已经开发了一种微流体系统,该系统与基片集成的中空波导(iHWG)气相红外光谱相结合,用于评估溶解在复杂流体中的挥发性化合物的化学活性。化学活性是过程分析和控制中的重要但很少利用的参数。使用化学活性参数可以对复杂流体的相图进行系统研究,检测聚集过程等。本文开发的仪器方法可独特地实现从样品溶液到中空波导结构的受控蒸发/渗透以及分压的分析。挥发性成分。以二元系统为例,表明可以从热力学平衡条件下的分压测量推导出化学活性。结合使用微流体-iHWG中红外传感器系统(μFLUID-IR),可以在没有采样操作引起的任何扰动的情况下实现此类研究,这是使用最新的分析技术(如顶空气相色谱法)不可避免的。出于演示目的,研究了水/乙醇混合物,并使用建立的文献值在不同的混合比下对得到的数据进行了交叉验证。除了无扰动的测量,传感器的响应时间<150 s(对水/乙醇混合物进行了研究,并将得出的数据与既定的文献值在不同的混合比下进行交叉验证。除了无扰动的测量,传感器的响应时间<150 s(对水/乙醇混合物进行了研究,并将得出的数据与既定的文献值在不同的混合比下进行交叉验证。除了无扰动的测量,传感器的响应时间<150 s(在恢复时间<300 s(t recovery)时达到了t 90),这证实了μFLUID-IR在将来的过程分析和控制应用中的效用。
更新日期:2018-03-05
down
wechat
bug