当前位置: X-MOL 学术Sol. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A review of the application of carbon materials in solar thermal energy storage
Solar Energy ( IF 6.7 ) Pub Date : 2019-11-01 , DOI: 10.1016/j.solener.2018.01.062
Heinrich Badenhorst

Abstract Graphitic materials can potentially mitigate the issue of low thermal conductivity in phase change materials (PCM) when used in solar thermal energy storage. However, carbon can form an exceedingly wide variety of allotropes which are difficult to distinguish. This study has examined an extensive range of energy storage carbon composites including: synthetic and natural graphite, graphitic fibres, graphitic foams, expanded graphite, graphite nano-platelets, graphene, carbon nanotubes and amorphous carbons. The thermal energy storage media covered include conventional low temperature materials such as paraffins, alcohols, fatty acids and numerous others, as well as high temperature salts. In addition, a wide range of both steady and unsteady state thermal conductivity measurement techniques are represented. Based on the collated results it is evident that particulate additives are limited, potentially due to contact resistance, to improving PCM thermal conductivities by a factor of less than ten. On the other hand, matrix materials like compressed expanded graphite and graphitic foams are capable of achieving enhancements in excess of 10,000%. Compressed expanded graphite composites appear to be the most economically favourable option. Nanomaterials do not perform as anticipated and indications are that costs must drop by more than three orders of magnitude before they become attractive. It has been demonstrated that it may be possible to predict composite thermal conductivity for all carbon materials using a single model, if an additional structural parameter could be measured.

中文翻译:

碳材料在太阳能热储能中的应用综述

摘要 当用于太阳能热能存储时,石墨材料可以潜在地缓解相变材料 (PCM) 的低热导率问题。然而,碳可以形成种类繁多的同素异形体,难以区分。这项研究检查了广泛的储能碳复合材料,包括:合成和天然石墨、石墨纤维、石墨泡沫、膨胀石墨、石墨纳米片、石墨烯、碳纳米管和无定形碳。所涵盖的热能储存介质包括常规的低温材料,例如石蜡、醇、脂肪酸和许多其他材料,以及高温盐。此外,还介绍了广泛的稳态和非稳态热导率测量技术。根据整理的结果,很明显颗粒添加剂受到限制,这可能是由于接触电阻,将 PCM 热导率提高不到 10 倍。另一方面,压缩膨胀石墨和石墨泡沫等基体材料能够实现超过 10,000% 的增强。压缩膨胀石墨复合材料似乎是最经济的选择。纳米材料的性能不如预期,而且有迹象表明,在它们变得有吸引力之前,成本必须下降三个数量级以上。已经证明,如果可以测量额外的结构参数,则可以使用单个模型预测所有碳材料的复合热导率。可能是由于接触电阻,将 PCM 热导率提高不到 10 倍。另一方面,压缩膨胀石墨和石墨泡沫等基体材料能够实现超过 10,000% 的增强。压缩膨胀石墨复合材料似乎是最经济的选择。纳米材料的性能不如预期,而且有迹象表明,在它们变得有吸引力之前,成本必须下降三个数量级以上。已经证明,如果可以测量额外的结构参数,则可以使用单个模型预测所有碳材料的复合热导率。可能是由于接触电阻,将 PCM 热导率提高不到 10 倍。另一方面,压缩膨胀石墨和石墨泡沫等基体材料能够实现超过 10,000% 的增强。压缩膨胀石墨复合材料似乎是最经济的选择。纳米材料的性能不如预期,而且有迹象表明,在它们变得有吸引力之前,成本必须下降三个数量级以上。已经证明,如果可以测量额外的结构参数,则可以使用单个模型预测所有碳材料的复合热导率。压缩膨胀石墨和石墨泡沫等基体材料能够实现超过 10,000% 的增强。压缩膨胀石墨复合材料似乎是最经济的选择。纳米材料的性能不如预期,而且有迹象表明,在它们变得有吸引力之前,成本必须下降三个数量级以上。已经证明,如果可以测量额外的结构参数,则可以使用单个模型预测所有碳材料的复合热导率。压缩膨胀石墨和石墨泡沫等基体材料能够实现超过 10,000% 的增强。压缩膨胀石墨复合材料似乎是最经济的选择。纳米材料的性能不如预期,而且有迹象表明,在它们变得有吸引力之前,成本必须下降三个数量级以上。已经证明,如果可以测量额外的结构参数,则可以使用单个模型预测所有碳材料的复合热导率。纳米材料的性能不如预期,而且有迹象表明,在它们变得有吸引力之前,成本必须下降三个数量级以上。已经证明,如果可以测量额外的结构参数,则可以使用单个模型预测所有碳材料的复合热导率。纳米材料的性能不如预期,而且有迹象表明,在它们变得有吸引力之前,成本必须下降三个数量级以上。已经证明,如果可以测量额外的结构参数,则可以使用单个模型预测所有碳材料的复合热导率。
更新日期:2019-11-01
down
wechat
bug