当前位置: X-MOL 学术Sol. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Part II: Thermal analysis of naturally ventilated BIPV system: Modeling and Simulation
Solar Energy ( IF 6.0 ) Pub Date : 2018-07-01 , DOI: 10.1016/j.solener.2018.02.057
Rafaela A. Agathokleous , Soteris A. Kalogirou

Abstract This is the second part of a two-part study based on the thermal behaviour of a naturally ventilated BIPV systems. In the first part an experimental analysis of the thermal behaviour of a naturally ventilated BIPV system is presented and two new correlations for the estimation of the convective heat transfer coefficients in the air gap between the PV panel and a second skin are given, for windy and non-windy conditions. The present study (second part) presents a simulation based thermal analysis of a naturally ventilated vertical BIPV system. The simulation model is created using the developed equations for the estimation of the convective heat transfer coefficients presented in the first part of the present study, and the model is validated with the use of experimental data shown in the first part as well. The experimental based correlations are imported in the mathematical model, in order to be able to investigate the effect of other parameters on the thermal behaviour of the system such as the height of the system, the size of the air gap and the air velocity in the duct. These parameters are not easy to be investigated experimentally and their investigation would be very time consuming. The simulation model has a good agreement with the experimental results. The results shown that an air gap of 0.1 m can create adequate air flow on naturally ventilated systems and can ensure low PV temperatures to avoid efficiency decrease. This can be done when the air gap has bottom and top openings to allow air circulation. In taller systems, the temperatures are higher and there is a drop of the efficiency of the system.

中文翻译:

第二部分:自然通风 BIPV 系统的热分析:建模与仿真

摘要 这是基于自然通风 BIPV 系统热行为的两部分研究的第二部分。在第一部分中,对自然通风 BIPV 系统的热行为进行了实验分析,并给出了两个新的相关性,用于估算 PV 电池板和第二层皮肤之间的空气间隙中的对流热传递系数,对于有风和无风条件。本研究(第二部分)介绍了基于模拟的自然通风垂直 BIPV 系统的热分析。该模拟模型是使用本研究第一部分中提出的用于估计对流换热系数的开发方程创建的,并且该模型还使用第一部分中所示的实验数据进行了验证。在数学模型中导入了基于实验的相关性,以便能够研究其他参数对系统热行为的影响,例如系统的高度、气隙的大小和空气中的空气速度。管。这些参数不容易通过实验进行研究,而且它们的研究将非常耗时。仿真模型与实验结果吻合较好。结果表明,0.1 m 的气隙可以在自然通风系统上产生足够的气流,并可以确保较低的光伏温度以避免效率下降。这可以在气隙具有底部和顶部开口以允许空气流通时完成。在较高的系统中,温度较高,系统效率会下降。
更新日期:2018-07-01
down
wechat
bug