当前位置: X-MOL 学术Sep. Purif. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
CFD modeling of bubble column: Influence of physico-chemical properties of the gas/liquid phases properties on bubble formation
Separation and Purification Technology ( IF 8.1 ) Pub Date : 2018-03-02 , DOI: 10.1016/j.seppur.2018.02.037
A.R. Sarhan , J. Naser , G. Brooks

Computational fluid dynamics (CFD) has been widely used to study the hydrodynamics of bubble column reactors. However, the interaction between the different phases, which are in fact intimately linked, and the effect of their physical properties on the dynamics of the bubbles are still not well understood. In this study, the population balance equation (PBE) is coupled with CFD model to investigate the effect of liquid and gas phases physico-chemical properties on bubbles formation and the hydrodynamic characteristics in bubble column reactors. The coupling is realized using AVL FIRE v.2017 software, and the predicted results are validated against published experimental data. User subroutines are written using FORTRAN to incorporate the scalar transport equation source term for bubble break-up and coalescence. The predicted results were in reasonable agreement with experimental observations and available literature results, since the model has been able to predict the effect of gas flow rate on the gas holdup in bubble column within the range of ±7%. The simulations showed that the average gas holdup increase with the increase in superficial gas velocity and gas phase density, and decrease with the increase in liquid phase density. It was also found that Sauter mean bubble diameter increases with the increase in liquid density and decreases with the increase in gas density. Finally, the bubble rise velocity increased when water was used as a continuous phase. On the other hand, the increase in gas density causes a decrease in the bubble rise velocity.



中文翻译:

鼓泡塔的CFD建模:气相/液相性质的理化性质对气泡形成的影响

计算流体动力学(CFD)已被广泛用于研究鼓泡塔反应器的流体动力学。然而,实际上并没有密切联系的不同相之间的相互作用,以及它们的物理性质对气泡动力学的影响仍未得到很好的理解。在这项研究中,人口平衡方程(PBE)与CFD模型耦合,以研究液相和气相的理化性质对气泡塔反应器中气泡形成和流体力学特性的影响。使用AVL FIRE v.2017软件实现耦合,并根据已发布的实验数据验证了预测结果。使用FORTRAN编写用户子例程,以合并用于气泡破裂和合并的标量传输方程源项。由于该模型已经能够预测气体流速对气泡塔中气体滞留率的影响,因此预测结果与实验观察结果和可用的文献结果合理吻合,范围为±7%。模拟表明,平均气含率随表观气速和气相密度的增加而增加,随液相密度的增加而降低。还发现,索特平均气泡直径随着液体密度的增加而增加,而随着气体密度的增加而减小。最后,当将水用作连续相时,气泡上升速度增加。另一方面,气体密度的增加导致气泡上升速度的降低。因为该模型已经能够预测气体流速对气泡塔中气体滞留量的影响,误差范围为±7%。模拟表明,平均气含率随表观气速和气相密度的增加而增加,随液相密度的增加而降低。还发现,索特平均气泡直径随着液体密度的增加而增加,而随着气体密度的增加而减小。最后,当将水用作连续相时,气泡上升速度增加。另一方面,气体密度的增加导致气泡上升速度的降低。因为该模型已经能够预测气体流速对气泡塔中气体滞留量的影响,误差范围为±7%。模拟表明,平均气含率随表观气速和气相密度的增加而增加,随液相密度的增加而降低。还发现,索特平均气泡直径随着液体密度的增加而增加,而随着气体密度的增加而减小。最后,当将水用作连续相时,气泡上升速度增加。另一方面,气体密度的增加导致气泡上升速度的降低。模拟表明,平均气含率随表观气速和气相密度的增加而增加,随液相密度的增加而降低。还发现,索特平均气泡直径随着液体密度的增加而增加,而随着气体密度的增加而减小。最后,当将水用作连续相时,气泡上升速度增加。另一方面,气体密度的增加导致气泡上升速度的降低。模拟表明,平均气含率随表观气速和气相密度的增加而增加,随液相密度的增加而降低。还发现,索特平均气泡直径随着液体密度的增加而增加,而随着气体密度的增加而减小。最后,当将水用作连续相时,气泡上升速度增加。另一方面,气体密度的增加导致气泡上升速度的降低。

更新日期:2018-03-02
down
wechat
bug