当前位置: X-MOL 学术Acta Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Impurity-free, mechanical doping for the reproducible fabrication of the reliable n -type Bi 2 Te 3 -based thermoelectric alloys
Acta Materialia ( IF 9.4 ) Pub Date : 2018-05-01 , DOI: 10.1016/j.actamat.2018.02.061
Sung-Jin Jung , Byeong-Hyeon Lee , Byung Kyu Kim , Sang-Soon Lim , Seong Keun Kim , Dong-Ik Kim , Sung Ok Won , Hyung-Ho Park , Jin-Sang Kim , Seung-Hyub Baek

Abstract Precise control of carrier density is essential to synthesize high-performance thermoelectric materials. Doping by impurities is often frustrated in n-type Bi2Te3 alloys by incomplete activation, bipolar doping, the formation of secondary phases, and prevailing intrinsic point defects such as vacancies. This weakens the reproducibility of synthesis processes and reduces the long-term reliability of material's performance, hence aging. Here, we explore an impurity-free doping technique to synthesize n-type bismuth tellurium selenides, combining a cold deformation and a hot extrusion. The cold deformation enables controlling the electron density in the range of ∼1019/cm3 via the formation of intrinsic point defects, and the hot extrusion allows texturing the microstructure to enhance the electrical conductivity, hence a large power factor of >5 × 10−3 W-m−1-K−2. We confirm that our process is very reproducible, and the properties of the samples are stable without aging even after thermal stresses. Using this method, we can decouple the relationship between bandgap, carrier density, and composition to improve the high-temperature thermoelectric property. Moreover, we demonstrate the fabrication of high-performance thermoelectric materials from low-graded, raw materials by modifying the degree of the mechanical deformation to reach an optimum carrier density. Our work provides a promising approach to synthesizing n-type thermoelectric materials in the reproducible and adaptable way.

中文翻译:

用于可重复制造可靠 n 型 Bi 2 Te 3 基热电合金的无杂质机械掺杂

摘要 载流子密度的精确控制对于合成高性能热电材料至关重要。在 n 型 Bi2Te3 合金中,杂质掺杂通常会因不完全活化、双极掺杂、第二相的形成和普遍存在的本征点缺陷(如空位)而受挫。这削弱了合成过程的可重复性并降低了材料性能的长期可靠性,从而导致老化。在这里,我们探索了一种结合冷变形和热挤压的无杂质掺杂技术来合成 n 型硒化碲碲。冷变形通过形成本征点缺陷使电子密度控制在~1019/cm3的范围内,热挤压使微观结构纹理化以提高电导率,因此具有 >5 × 10-3 Wm-1-K-2 的大功率因数。我们确认我们的过程是非常可重复的,并且即使在热应力之后样品的特性也不会老化而稳定。使用这种方法,我们可以解耦带隙、载流子密度和成分之间的关​​系,以提高高温热电性能。此外,我们展示了通过改变机械变形程度以达到最佳载流子密度,用低级原材料制造高性能热电材料。我们的工作为以可重复和适应性强的方式合成 n 型热电材料提供了一种很有前景的方法。使用这种方法,我们可以解耦带隙、载流子密度和成分之间的关​​系,以提高高温热电性能。此外,我们展示了通过改变机械变形程度以达到最佳载流子密度,用低级原材料制造高性能热电材料。我们的工作为以可重复和适应性强的方式合成 n 型热电材料提供了一种很有前景的方法。使用这种方法,我们可以解耦带隙、载流子密度和成分之间的关​​系,以提高高温热电性能。此外,我们展示了通过改变机械变形程度以达到最佳载流子密度,用低级原材料制造高性能热电材料。我们的工作为以可重复和适应性强的方式合成 n 型热电材料提供了一种很有前景的方法。
更新日期:2018-05-01
down
wechat
bug