当前位置: X-MOL 学术Phys. Chem. Chem. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Atomistic investigations on the mechanical properties and fracture mechanisms of indium phosphide nanowires
Physical Chemistry Chemical Physics ( IF 2.9 ) Pub Date : 2018-03-01 00:00:00 , DOI: 10.1039/c7cp08252e
Turash Haque Pial 1, 2, 3, 4 , Tawfiqur Rakib 1, 2, 3, 4 , Satyajit Mojumder 1, 2, 3, 4 , Mohammad Motalab 1, 2, 3, 4 , M. A. Salam Akanda 1, 2, 3, 4
Affiliation  

The mechanical properties of indium phosphide (InP) nanowires are an emerging issue due to the promising applications of these nanowires in nanoelectromechanical and microelectromechanical devices. In this study, molecular dynamics simulations of zincblende (ZB) and wurtzite (WZ) crystal structured InP nanowires (NWs) are presented under uniaxial tension at varying sizes and temperatures. It is observed that the tensile strengths of both types of NWs show inverse relationships with temperature, but are independent of the size of the nanowires. Moreover, applied load causes brittle fracture by nucleating cleavage on ZB and WZ NWs. When the tensile load is applied along the [001] direction, the direction of the cleavage planes of ZB NWs changes with temperature. It is found that the {111} planes are the cleavage planes at lower temperatures; on the other hand, the {110} cleavage planes are activated at elevated temperatures. In the case of WZ NWs, fracture of the material is observed to occur by cleaving along the (0001) plane irrespective of temperature when the tensile load is applied along the [0001] direction. Furthermore, the WZ NWs of InP show considerably higher strength than their ZB counterparts. Finally, the impact of strain rate on the failure behavior of InP NWs is also studied, and higher fracture strengths and strains at higher strain rates are found. With increasing strain rate, the number of cleavages also increases in the NWs. This paper also provides in-depth understanding of the failure behavior of InP NWs, which will aid the design of efficient InP NWs-based devices.

中文翻译:

磷化铟纳米线力学性能及断裂机理的原子学研究

磷化铟(InP)纳米线的机械性能是一个新兴问题,因为这些纳米线在纳米机电和微机电设备中的应用前景广阔。在这项研究中,在不同的尺寸和温度下,单轴张力下的锌闪锌矿(ZB)和纤锌矿(WZ)晶体结构的InP纳米线(NWs)的分子动力学模拟。可以观察到,两种类型的NW的拉伸强度都与温度成反比,但与纳米线的尺寸无关。此外,施加的载荷通过在ZB和WZ NW上形核分裂而导致脆性断裂。当沿着[001]方向施加拉伸载荷时,ZB NW的分裂面的方向随温度变化。发现{111}面是较低温度下的解理面。另一方面,{110}分裂平面在升高的温度下被激活。在WZ NW的情况下,当沿[0001]方向施加拉伸载荷时,观察到材料的破裂是通过沿(0001)面解理而与温度无关的。此外,InP的WZ NW显示出比ZB同类更高的强度。最后,还研究了应变速率对InP NWs破坏行为的影响,并发现了较高的断裂强度和较高应变速率下的应变。随着应变率的增加,NW中的裂解数也增加。本文还深入了解了InP NW的故障行为,这将有助于设计基于InP NW的高效设备。当沿着[0001]方向施加拉伸载荷时,观察到材料的断裂是通过沿着(0001)面的解理而发生的,而与温度无关。此外,InP的WZ NW显示出比ZB同类更高的强度。最后,还研究了应变速率对InP NWs破坏行为的影响,并发现了较高的断裂强度和较高应变速率下的应变。随着应变率的增加,NW中的裂解数也增加。本文还深入了解了InP NW的故障行为,这将有助于设计基于InP NW的高效设备。当沿着[0001]方向施加拉伸载荷时,观察到材料的断裂是通过沿着(0001)面的解理而发生的,而与温度无关。此外,InP的WZ NW显示出比ZB同类更高的强度。最后,还研究了应变速率对InP NWs破坏行为的影响,并发现了较高的断裂强度和较高应变速率下的应变。随着应变率的增加,NW中的裂解数也增加。本文还深入了解了InP NW的故障行为,这将有助于设计基于InP NW的高效设备。InP的WZ NW显示出比ZB同类更高的强度。最后,还研究了应变速率对InP NWs破坏行为的影响,并发现了较高的断裂强度和较高应变速率下的应变。随着应变率的增加,NW中的裂解数也增加。本文还深入了解了InP NW的故障行为,这将有助于设计基于InP NW的高效设备。InP的WZ NW显示出比ZB同类更高的强度。最后,还研究了应变速率对InP NWs破坏行为的影响,并发现了较高的断裂强度和较高应变速率下的应变。随着应变率的增加,NW中的裂解数也增加。本文还深入了解了InP NW的故障行为,这将有助于设计基于InP NW的高效设备。
更新日期:2018-03-01
down
wechat
bug