当前位置: X-MOL 学术Carbon › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Stacked-graphene layers as engineered solid-electrolyte interphase (SEI) grown by chemical vapour deposition for lithium-ion batteries
Carbon ( IF 10.9 ) Pub Date : 2018-06-01 , DOI: 10.1016/j.carbon.2018.02.103
Taehoon Kim , Matthew R. Leyden , Luis K. Ono , Yabing Qi

Abstract A multi-layer of stacked-graphene (8 layers of basal planes) grown by chemical vapour deposition (CVD) is introduced as an artificial solid electrolyte interphase (SEI) layer onto a transition metal oxide cathode for lithium-ion batteries. The basal planes are generally regarded as a strong physical barrier that prevents lithium-ion diffusion, although it is believed that a small number of lithium-ions can migrate through the defect sites of the stacked layers. Interestingly, the unique design of the stacked-graphene perpendicular to the basal planes not only effectively suppresses the formation of instable SEI layers, but also achieves a reasonable amount of battery charge capacities. To correctly understand the impact from the stacked design, we further studied the rate kinetics difference between slow cycles (0.125 C→0.250 C→0.400 C→0.125 C) and rapid cycles (C→2 C→3 C→C). We propose that the clap-net like design of the stacked-graphene could enable the effective conducting pathway for electron transport, while protecting the active material inside. The magnetic measurements reveal the efficient Li+ (de)intercalation into graphene-layers. The artificial SEI also renders the electrode/electrolyte interface more stable against dynamic rate changes. The present approach provides a particular advantage in developing high stability battery that can be utilized at various charge rates.

中文翻译:

通过化学气相沉积为锂离子电池生长的作为工程固体电解质中间相 (SEI) 的堆叠石墨烯层

摘要 将通过化学气相沉积 (CVD) 生长的多层堆叠石墨烯 (8 层基面) 作为人工固体电解质中间相 (SEI) 层引入到锂离子电池的过渡金属氧化物阴极上。基面通常被认为是阻止锂离子扩散的强大物理屏障,尽管据信少量锂离子可以通过堆叠层的缺陷位点迁移。有趣的是,垂直于基面的堆叠石墨烯的独特设计不仅有效抑制了不稳定SEI层的形成,而且还实现了合理数量的电池充电容量。为了正确理解堆叠设计的影响,我们进一步研究了慢循环之间的速率动力学差异(0.125 C→0.250 C→0.400 C→0。125 C) 和快速循环 (C→2 C→3 C→C)。我们建议堆叠石墨烯的拍手网状设计可以为电子传输提供有效的导电途径,同时保护内部的活性材料。磁性测量揭示了有效的 Li+(脱)嵌入石墨烯层。人工 SEI 还使电极/电解质界面对动态速率变化更加稳定。本方法在开发可在各种充电率下使用的高稳定性电池方面提供了特别的优势。磁性测量揭示了有效的 Li+(脱)嵌入石墨烯层。人工 SEI 还使电极/电解质界面对动态速率变化更加稳定。本方法在开发可在各种充电率下使用的高稳定性电池方面提供了特别的优势。磁性测量揭示了有效的 Li+(脱)嵌入石墨烯层。人工 SEI 还使电极/电解质界面对动态速率变化更加稳定。本方法在开发可在各种充电速率下使用的高稳定性电池方面提供了特别的优势。
更新日期:2018-06-01
down
wechat
bug