当前位置: X-MOL 学术Nat. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Spatially controlled doping of two-dimensional SnS 2 through intercalation for electronics
Nature Nanotechnology ( IF 38.1 ) Pub Date : 2018-02-26 , DOI: 10.1038/s41565-018-0069-3
Yongji Gong , Hongtao Yuan , Chun-Lan Wu , Peizhe Tang , Shi-Ze Yang , Ankun Yang , Guodong Li , Bofei Liu , Jorik van de Groep , Mark L. Brongersma , Matthew F. Chisholm , Shou-Cheng Zhang , Wu Zhou , Yi Cui

Doped semiconductors are the most important building elements for modern electronic devices1. In silicon-based integrated circuits, facile and controllable fabrication and integration of these materials can be realized without introducing a high-resistance interface2,3. Besides, the emergence of two-dimensional (2D) materials enables the realization of atomically thin integrated circuits4,5,6,7,8,9. However, the 2D nature of these materials precludes the use of traditional ion implantation techniques for carrier doping and further hinders device development10. Here, we demonstrate a solvent-based intercalation method to achieve p-type, n-type and degenerately doped semiconductors in the same parent material at the atomically thin limit. In contrast to naturally grown n-type S-vacancy SnS2, Cu intercalated bilayer SnS2 obtained by this technique displays a hole field-effect mobility of ~40 cm2 V−1 s−1, and the obtained Co-SnS2 exhibits a metal-like behaviour with sheet resistance comparable to that of few-layer graphene5. Combining this intercalation technique with lithography, an atomically seamless p–n–metal junction could be further realized with precise size and spatial control, which makes in-plane heterostructures practically applicable for integrated devices and other 2D materials. Therefore, the presented intercalation method can open a new avenue connecting the previously disparate worlds of integrated circuits and atomically thin materials.



中文翻译:

电子器件插层对二维SnS 2的空间控制掺杂

掺杂半导体是现代电子设备1最重要的建筑元素。在基于硅的集成电路中,无需引入高电阻接口2,3即可实现这些材料的便捷,可控的制造和集成。此外,二维(2D)材料的出现使原子薄的集成电路4,5,6,7,8,9的实现成为可能。但是,这些材料的2D性质无法使用传统的离子注入技术进行载流子掺杂,并进一步阻碍了器件的开发10。在这里,我们展示了一种基于溶剂的插层方法,可在同一母体材料中以原子薄的极限实现p型,n型和简并掺杂的半导体。与自然生长的n型S-空位SnS 2相比,通过该技术获得的Cu插层双层SnS 2显示出〜40cm 2  V -1  s -1的空穴场效应迁移率,并且所获得的Co-SnS 2显示出具有类似于几层石墨烯5的薄层电阻的类似金属的行为。将这种嵌入技术与光刻技术相结合,可以通过精确的尺寸和空间控制进一步实现原子无缝的p–n–金属结,这使得面内异质结构实际上适用于集成设备和其他2D材料。因此,提出的插层方法可以开辟一条新的途径,将先前不同的集成电路世界与原子薄材料连接起来。

更新日期:2018-02-27
down
wechat
bug