当前位置: X-MOL 学术Adv. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Uniformly Grafting SnO2 Nanoparticles on Ionic Liquid Reduced Graphene Oxide Sheets for High Lithium Storage
Advanced Materials Interfaces ( IF 4.3 ) Pub Date : 2018-02-26 , DOI: 10.1002/admi.201701685
Shengming Zhu 1 , Xufeng Dong 1 , Song Gao 1 , Xiaozhe Jin 1 , Hao Huang 1 , Min Qi 1
Affiliation  

SnO2‐based anode materials for lithium ion batteries suffer from inevitable pulverization and electrical disconnection during repeated charge–discharge cycles. Stabilizing nanostructure of SnO2 particles by graphene is one of the most extensively studied strategies to achieve high capacity and long‐term cyclability. However, in the wet chemistry, the reaggregation of the solvent–dispersed graphene and the SnO2 make it difficult to fabricate SnO2/graphene composites with desirable nanostructure which can be maintained during lithiation. Herein, the ionic liquid‐assisted method is applied to prepare SnO2 nanoparticles grafted on ionic liquid reduced graphene oxide (SnO2@IL‐RGO) composite through a novel “bridging effect” generated from the interaction between these two constituents and ionic liquid which efficiently maintains the desirable nanostructure and offers more conductive pathway upon cycling. The composite as an anode material achieves an increasing capacity up to 1508 mAh g−1 in the 427th cycle at high current of 1 A g−1. The ionic liquid‐assisted strategy may be a promising approach to promote the strong combination and uniform dispersion of other metal oxides on the carbonaceous materials, providing a new way to prepare metal oxide–carbon composites for wide applications.

中文翻译:

离子液体还原的氧化石墨烯片上均匀接枝的SnO2纳米颗粒用于高锂存储

锂离子电池基于SnO 2的负极材料在反复的充放电循环中不可避免地会发生粉碎和断电。用石墨烯稳定SnO 2颗粒的纳米结构是获得高容量和长期可循环性的最广泛研究的策略之一。但是,在湿化学中,溶剂分散的石墨烯和SnO 2的重新聚集使难以制造出具有理想纳米结构的SnO 2 /石墨烯复合材料,可以在锂化过程中保持这种复合结构。在此,应用了离子液体辅助方法制备的SnO 2个纳米粒子上接枝的离子液体还原的石墨烯氧化物(SNO 2通过这两种成分与离子液体之间的相互作用产生的新型“桥联效应”(@ IL‐RGO)复合物,可以有效地维持所需的纳米结构,并在循环时提供更多的导电途径。作为阳极材料的复合材料在1 A g -1的高电流下的第427个循环中实现了高达1508 mAh g -1的增加容量。离子液体辅助策略可能是一种有前途的方法,可促进其他金属氧化物在碳质材料上的牢固结合和均匀分散,为制备可广泛应用的金属氧化物-碳复合材料提供了新途径。
更新日期:2018-02-26
down
wechat
bug