当前位置: X-MOL 学术IEEE Trans. Ind. Electron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Lithium-ion battery remaining useful life prediction with Box-Cox transformation and Monte Carlo simulation
IEEE Transactions on Industrial Electronics ( IF 7.7 ) Pub Date : 2019-02-01 , DOI: 10.1109/tie.2018.2808918
Yongzhi Zhang , Rui Xiong , Hongwen He , Michael G. Pecht

The current lithium-ion battery remaining useful life (RUL) prediction techniques are mainly developed dependent on offline training data. The loaded current, temperature, and state of charge of lithium-ion batteries used for electric vehicles (EVs) change dramatically under the working conditions. Therefore, it is difficult to design acceleration aging tests of lithium-ion batteries under similar working conditions as those for EVs and to collect effective offline training data. To address this problem, this paper developed an RUL prediction method based on the Box–Cox transformation (BCT) and Monte Carlo (MC) simulation. This method can be implemented independent of offline training data. In the method, the BCT was used to transform the available capacity data and to construct a linear model between the transformed capacities and cycles. The constructed linear model using the BCT was extrapolated to predict the battery RUL, and the RUL prediction uncertainties were generated using the MC simulation. Experimental results showed that accurate and precise RULs were predicted with errors and standard deviations within, respectively, [-20, 10] cycles and [1.8, 7] cycles. If some offline training data are available, the method can reduce the required online training data and, thus, the acceleration aging test time of lithium-ion batteries. Experimental results showed that the acceleration time of the tested cells can be reduced by 70%–85% based on the developed method, which saved one to three months’ acceleration test time compared to the particle filter method.

中文翻译:

使用 Box-Cox 变换和 Monte Carlo 模拟的锂离子电池剩余使用寿命预测

目前的锂离子电池剩余使用寿命(RUL)预测技术主要是基于离线训练数据开发的。用于电动汽车 (EV) 的锂离子电池的负载电流、温度和充电状态在工作条件下会发生显着变化。因此,很难设计锂离子电池在与电动汽车相似的工作条件下的加速老化测试并收集有效的离线训练数据。为了解决这个问题,本文开发了一种基于 Box-Cox 变换 (BCT) 和蒙特卡罗 (MC) 模拟的 RUL 预测方法。该方法可以独立于离线训练数据实现。在该方法中,BCT 用于转换可用容量数据,并在转换后的容量和周期之间构建线性模型。使用 BCT 构建的线性模型外推以预测电池 RUL,并使用 MC 模拟生成 RUL 预测不确定性。实验结果表明,预测准确和精确的 RUL,误差和标准偏差分别在 [-20, 10] 个周期和 [1.8, 7] 个周期内。如果有一些离线训练数据,该方法可以减少所需的在线训练数据,从而减少锂离子电池的加速老化测试时间。实验结果表明,基于所开发的方法,被测细胞的加速时间可减少70%~85%,与粒子过滤法相比,可节省1-3个月的加速测试时间。RUL 预测不确定性是使用 MC 模拟生成的。实验结果表明,预测准确和精确的 RUL,误差和标准偏差分别在 [-20, 10] 个周期和 [1.8, 7] 个周期内。如果有一些离线训练数据,该方法可以减少所需的在线训练数据,从而减少锂离子电池的加速老化测试时间。实验结果表明,基于所开发的方法,被测细胞的加速时间可减少70%~85%,与粒子过滤法相比,可节省1-3个月的加速测试时间。RUL 预测不确定性是使用 MC 模拟生成的。实验结果表明,预测准确和精确的 RUL,误差和标准偏差分别在 [-20, 10] 个周期和 [1.8, 7] 个周期内。如果有一些离线训练数据,该方法可以减少所需的在线训练数据,从而减少锂离子电池的加速老化测试时间。实验结果表明,基于所开发的方法,被测细胞的加速时间可减少70%~85%,与粒子过滤法相比,可节省1-3个月的加速测试时间。如果有一些离线训练数据,该方法可以减少所需的在线训练数据,从而减少锂离子电池的加速老化测试时间。实验结果表明,基于所开发的方法,被测细胞的加速时间可减少70%~85%,与粒子过滤法相比,可节省1-3个月的加速测试时间。如果有一些离线训练数据,该方法可以减少所需的在线训练数据,从而减少锂离子电池的加速老化测试时间。实验结果表明,基于所开发的方法,被测细胞的加速时间可减少70%~85%,与粒子过滤法相比,可节省1-3个月的加速测试时间。
更新日期:2019-02-01
down
wechat
bug