当前位置: X-MOL 学术Ultrason. Sonochem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microstructural evolution of SiC joints soldered using Zn–Al filler metals with the assistance of ultrasound
Ultrasonics Sonochemistry ( IF 8.4 ) Pub Date : 2018-02-23 , DOI: 10.1016/j.ultsonch.2018.02.037
Bingzhi Wu , Xuesong Leng , Ziyang Xiu , Jiuchun Yan

SiC ceramics were successfully soldered with the assistance of ultrasound. Two kinds of filler metals, namely non-eutectic Zn–5Al–3Cu and eutectic Zn–5Al alloys, were used. The effects of ultrasonic action on the microstructure and mechanical properties of the soldered joints were investigated. The results showed that ultrasound could promote the wetting and bonding between the SiC ceramic and filler metals within tens of seconds. For the Zn–5Al–3Cu solder, a fully grain-refined structure in the bond layer was obtained as the ultrasonic action time increased. This may lead to a substantial enhancement in the strength of the soldered joints. For the Zn–5Al solder, the shear strength of the soldered joints was only ∼102 MPa when the ultrasonic action time was shorter, and fractures occurred in the brittle lamellar eutectic phases in the center of the bond layer. With increasing ultrasonic action time, the lamellar eutectic phase in the bond layer of SiC joints could be completely transformed to a fine non-lamellar eutectic structure. Meanwhile, the grains in the bond layer were obviously refined. Those results led to the remarkable enhancement of the shear strength of the joints (∼138 MPa) using the Zn–5Al solder, which had approached that enhancement using the Zn–5Al–3Cu solder. The enhanced mechanical properties of the joints were attributed to the significant refinement of the grains and the change in the eutectic structure in the bond layer. Prolonged enhanced heterogeneous nucleation triggered by ultrasonic cavitation is the predominant refinement mechanism of the bond metals of the SiC joints.

更新日期:2018-02-23
down
wechat
bug