当前位置: X-MOL 学术Int. J. Greenh. Gas. Con. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Integration of solid oxide fuel cell (SOFC) and chemical looping combustion (CLC) for ultra-high efficiency power generation and CO2 production
International Journal of Greenhouse Gas Control ( IF 4.6 ) Pub Date : 2018-02-21 , DOI: 10.1016/j.ijggc.2018.02.005
Vincenzo Spallina , Pasquale Nocerino , Matteo C. Romano , Martin van Sint Annaland , Stefano Campanari , Fausto Gallucci

This work presents a thermodynamic analysis of the integration of solid oxide fuel cells (SOFCs) with chemical looping combustion (CLC) in natural gas power plants. The fundamental idea of the proposed process integration is to use a dual fluidized-bed CLC process to complete the oxidation of the H2-CO-rich anode exhausts from the SOFC in the CLC fuel reactor while preheating the air stream to the cathode inlet temperature in the CLC air reactor. Thus, fuel oxidation can be completed in N2-free environment without the high energy and economic costs associated to O2 production, avoiding at the same time the high temperature and high cost heat exchanger needed in conventional SOFC plants for air preheating. In the proposed configurations, the CLC plant is operated at mild conditions (atmospheric pressure and temperature in the range of 700–800 °C), already demonstrated in several pilot plants. Two different scenarios have been investigated: in the first one, the SOFC is designed for large-scale power generation (100 MWLHV of heat input), featuring a heat recovery steam cycle and CO2 capture for subsequent storage. In the second scenario, the system is designed for a small-scale plant, producing 145 kg/h of pure CO2 for industrial utilization, as a possible early market application.

The main parameters affecting the plant performance, i.e. SOFC voltage (V) and S/C ratio at SOFC inlet, have been varied in a sensitivity analysis. Three different materials (Ni, Fe and Cu-based) are also compared as oxygen carriers (OCs) in the CLC unit. The integrated plant shows very high electric efficiency, exceeding 66%LHV at both small and large scale with a carbon capture ratio (CCR) of nearly 100%. It was found that, except for the cell voltage, the other operating parameters do not affect significantly the efficiency of the plant. Compared to the benchmark SOFC-based hybrid cycles using conventional CO2 capture technologies, the SOFC-CLC power plant showed an electric efficiency ∼2 percentage points higher, without requiring high temperature heat exchangers and with a simplified process configuration.



中文翻译:

固体氧化物燃料电池(SOFC)和化学循环燃烧(CLC)的集成,可实现超高效发电和CO 2的生产

这项工作提出了天然气电厂中固体氧化物燃料电池(SOFC)与化学循环燃烧(CLC)集成的热力学分析。拟议的过程集成的基本思想是使用双流化床CLC工艺完成CLC燃料反应器中SOFC中富含H 2 -CO阳极废气的氧化,同时将气流预热至阴极入口温度在CLC空气反应堆中。因此,可以在无N 2的环境中完成燃料氧化,而不会产生与O 2相关的高能量和经济成本。生产中,同时避免了传统SOFC工厂中进行空气预热所需的高温和高成本的热交换器。在建议的配置中,CLC工厂在温和的条件下(大气压力和温度在700-800°C范围内)运行,这已在数家中试工厂中得到证明。已研究了两种不同的方案:在第一种方案中,SOFC设计用于大规模发电(热量输入为100 MW LHV),具有热回收蒸汽循环和CO 2捕集以用于后续存储的特点。在第二种情况下,该系统是为小型工厂设计的,可产生145 kg / h的纯CO 2供工业利用,这可能是早期的市场应用。

影响工厂性能的主要参数,即SOFC入口处的SOFC电压(V)和S / C比,已在灵敏度分析中进行了更改。在CLC单元中,还比较了三种不同的材料(Ni,Fe和Cu基)作为氧载体(OCs)。该综合工厂显示出非常高的电效率,无论规模大小,其LHV都超过66%,碳捕获率(CCR)接近100%。已经发现,除了电池电压外,其他运行参数不会显着影响电站的效率。与使用常规CO 2的基于基准SOFC的混合循环相比 SOFC-CLC电厂采用捕集技术后,其电力效率提高了约2个百分点,而无需使用高温热交换器,并且简化了工艺配置。

更新日期:2018-02-21
down
wechat
bug