当前位置: X-MOL 学术Chem. Eng. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamic changes in gas-liquid mass transfer during Taylor flow in long serpentine square microchannels
Chemical Engineering Science ( IF 4.1 ) Pub Date : 2018-06-01 , DOI: 10.1016/j.ces.2018.02.018
Peng Zhang , Chaoqun Yao , Haiyun Ma , Nan Jin , Xunli Zhang , Hongying Lü , Yuchao Zhao

The present work focuses on the hydrodynamics variation and mass transfer characteristics of Taylor flow along long serpentine microchannels with a square cross-section. The volumetric mass transfer coefficient (kLa) is regarded as the transient change value to characterize the gas-liquid mass transfer process of CO2 in water. All experimental data of Taylor bubble are obtained from 1,000 continuously captured images. An online high-speed imaging method and the unit cell model are adopted in this study. The effects of gas and liquid flow rates, together with microchannel geometry are investigated on Taylor bubble characteristics in terms of length, velocity and the mass transfer performance. Taylor bubble length shrinks and subsequently plateaus out along the flow direction from the T-junction, resulting in the decrease in Taylor bubble velocity. kLa in a unit cell gradually decreases along the serpentine microchannel, and increases as the channel cross-sectional area decreases. As the gas flow rate increases under a given liquid flow rate, a critical point is found for the evolution of kLa and kL (that is the liquid phase mass transfer coefficient). The results indicate that the contribution of the circulation in the liquid slug to kL is dominant before the critical point compared to the leakage flow in the liquid film. All these findings in this work give important information to understand the dynamic change in gas-liquid Taylor flow mass transfer within microchannels. They will serve as basis for designing and optimizing gas-liquid multiphase microreactors in the future.

中文翻译:

长蛇形方形微通道中泰勒流动过程中气液传质的动态变化

目前的工作重点是泰勒流沿具有方形横截面的长蛇形微通道的流体动力学变化和传质特性。体积传质系数(kLa)被视为表征CO2在水中的气液传质过程的瞬态变化值。泰勒气泡的所有实验数据都是从 1000 张连续捕获的图像中获得的。本研究采用在线高速成像方法和晶胞模型。研究了气体和液体流速以及微通道几何形状对泰勒气泡在长度、速度和传质性能方面的特性的影响。泰勒气泡长度收缩,随后沿流动方向从 T 形接头处趋于平稳,从而导致泰勒气泡速度降低。晶胞中的 kLa 沿着蛇形微通道逐渐减小,并随着通道横截面积的减小而增加。在给定的液体流速下,随着气体流速的增加,发现了 kLa 和 kL(即液相传质系数)演变的临界点。结果表明,与液膜中的泄漏流相比,在临界点之前,液塞中的循环对 kL 的贡献占主导地位。这项工作中的所有这些发现为了解微通道内气液泰勒流传质的动态变化提供了重要信息。它们将作为未来设计和优化气液多相微反应器的基础。并且随着通道横截面积的减小而增加。在给定的液体流速下,随着气体流速的增加,发现了 kLa 和 kL(即液相传质系数)演变的临界点。结果表明,与液膜中的泄漏流相比,在临界点之前,液塞中的循环对 kL 的贡献占主导地位。这项工作中的所有这些发现为了解微通道内气液泰勒流传质的动态变化提供了重要信息。它们将作为未来设计和优化气液多相微反应器的基础。并且随着通道横截面积的减小而增加。在给定的液体流速下,随着气体流速的增加,发现了 kLa 和 kL(即液相传质系数)演变的临界点。结果表明,与液膜中的泄漏流相比,在临界点之前,液塞中的循环对 kL 的贡献占主导地位。这项工作中的所有这些发现为了解微通道内气液泰勒流传质的动态变化提供了重要信息。它们将作为未来设计和优化气液多相微反应器的基础。结果表明,与液膜中的泄漏流相比,在临界点之前,液塞中的循环对 kL 的贡献占主导地位。这项工作中的所有这些发现为了解微通道内气液泰勒流传质的动态变化提供了重要信息。它们将作为未来设计和优化气液多相微反应器的基础。结果表明,与液膜中的泄漏流相比,在临界点之前,液塞中的循环对 kL 的贡献占主导地位。这项工作中的所有这些发现为了解微通道内气液泰勒流传质的动态变化提供了重要信息。它们将作为未来设计和优化气液多相微反应器的基础。
更新日期:2018-06-01
down
wechat
bug