当前位置: X-MOL 学术J. Comput. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Trigger bond analysis of nitroaromatic energetic materials using wiberg bond indices
Journal of Computational Chemistry ( IF 3.4 ) Pub Date : 2018-02-21 , DOI: 10.1002/jcc.25186
Ashley L. Shoaf 1 , Craig A. Bayse 1
Affiliation  

The identification of trigger bonds, bonds that break to initiate explosive decomposition, using computational methods could help direct the development of novel, “green” and efficient high energy density materials (HEDMs). Comparing bond densities in energetic materials to reference molecules using Wiberg bond indices (WBIs) provides a relative scale for bond activation (%ΔWBIs) to assign trigger bonds in a set of 63 nitroaromatic conventional energetic molecules. Intramolecular hydrogen bonding interactions enhance contributions of resonance structures that strengthen, or deactivate, the CNO2 trigger bonds and reduce the sensitivity of nitroaniline‐based HEDMs. In contrast, unidirectional hydrogen bonding in nitrophenols strengthens the bond to the hydrogen bond acceptor, but the phenol lone pairs repel and activate an adjacent nitro group. Steric effects, electron withdrawing groups and greater nitro dihedral angles also activate the CNO2 trigger bonds. %ΔWBIs indicate that nitro groups within an energetic molecule are not all necessarily equally activated to contribute to initiation. %ΔWBIs generally correlate well with impact sensitivity, especially for HEDMs with intramolecular hydrogen bonding, and are a better measure of trigger bond strength than bond dissociation energies (BDEs). However, the method is less effective for HEDMs with significant secondary effects in the solid state. Assignment of trigger bonds using %ΔWBIs could contribute to understanding the effect of intramolecular interactions on energetic properties. © 2018 Wiley Periodicals, Inc.

中文翻译:

使用 wiberg 键指数对硝基芳香族含能材料进行触发键分析

使用计算方法识别触发键,即断裂以引发爆炸分解的键,可以帮助指导开发新型、“绿色”和高效的高能量密度材料 (HEDM)。使用 Wiberg 键指数 (WBI) 将高能材料中的键密度与参考分子的键密度进行比较,提供了键激活的相对比例 (%ΔWBI),以分配一组 63 种硝基芳族常规高能分子中的触发键。分子内氢键相互作用增强了共振结构的贡献,这些共振结构增强或失活了 CNO2 触发键并降低了基于硝基苯胺的 HEDM 的灵敏度。相比之下,硝基苯酚中的单向氢键加强了与氢键受体的键合,但苯酚孤对分子排斥并激活了相邻的硝基。空间效应、吸电子基团和更大的硝基二面角也会激活 CNO2 触发键。%ΔWBI 表明高能分子内的硝基不一定都被同样激活以促进引发。%ΔWBI 通常与冲击敏感性相关,特别是对于具有分子内氢键的 HEDM,并且是比键解离能 (BDE) 更好的触发键强度度量。然而,该方法对于在固态下具有显着二次效应的 HEDM 效果较差。使用 %ΔWBI 分配触发键有助于理解分子内相互作用对能量特性的影响。© 2018 Wiley Periodicals, Inc. %ΔWBI 表明高能分子内的硝基不一定都被同样激活以促进引发。%ΔWBI 通常与冲击敏感性相关,特别是对于具有分子内氢键的 HEDM,并且是比键解离能 (BDE) 更好的触发键强度度量。然而,该方法对于在固态下具有显着二次效应的 HEDM 效果较差。使用 %ΔWBI 分配触发键有助于理解分子内相互作用对能量特性的影响。© 2018 Wiley Periodicals, Inc. %ΔWBI 表明高能分子内的硝基不一定都被同样激活以促进引发。%ΔWBI 通常与冲击敏感性相关,特别是对于具有分子内氢键的 HEDM,并且是比键解离能 (BDE) 更好的触发键强度度量。然而,该方法对于在固态下具有显着二次效应的 HEDM 效果较差。使用 %ΔWBI 分配触发键有助于理解分子内相互作用对能量特性的影响。© 2018 Wiley Periodicals, Inc. 并且是比键解离能 (BDE) 更好的触发键强度度量。然而,该方法对于在固态下具有显着二次效应的 HEDM 效果较差。使用 %ΔWBI 分配触发键有助于理解分子内相互作用对能量特性的影响。© 2018 Wiley Periodicals, Inc. 并且是比键解离能 (BDE) 更好的触发键强度度量。然而,该方法对于在固态下具有显着二次效应的 HEDM 效果较差。使用 %ΔWBI 分配触发键有助于理解分子内相互作用对能量特性的影响。© 2018 Wiley Periodicals, Inc.
更新日期:2018-02-21
down
wechat
bug