当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Holey 2D Nanosheets of Low‐Valent Manganese Oxides with an Excellent Oxygen Catalytic Activity and a High Functionality as a Catalyst for Li–O2 Batteries
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2018-02-20 , DOI: 10.1002/adfm.201707106
Kanyaporn Adpakpang 1, 2 , Seung Mi Oh 1 , Daniel Adjei Agyeman 3 , Xiaoyan Jin 1 , Nutpaphat Jarulertwathana 1 , In Young Kim 1 , Thapanee Sarakonsri 4 , Yong-Mook Kang 3 , Seong-Ju Hwang 1
Affiliation  

Holey 2D nanosheets of low‐valent Mn2O3 can be synthesized by thermally induced phase transition of exfoliated layered MnO2 nanosheets. The heat treatment of layered MnO2 nanosheets at elevated temperatures leads not only to transitions to low‐valent manganese oxides but also to the creation of surface hole in the 2D nanosheet crystallites. Despite distinct phase transitions, highly anisotropic 2D morphology of the precursor MnO2 material remains intact upon the heat treatment whereas the diameter of surface hole becomes larger with increasing heating temperature. The obtained holey 2D Mn2O3 nanosheets show promising electrocatalyst performances for oxygen evolution reaction, which are much superior to that of nonporous Mn2O3 crystal. Among the present materials, the holey Mn2O3 nanosheet calcined at 500 °C displays the best electrocatalyst functionality with markedly decreased overpotential, indicating the importance of heating condition in optimizing the electrocatalytic activity. Of prime importance is that this material shows much better catalytic activity for Li–O2 batteries than does nonporous Mn2O3, underscoring the critical role of porous 2D morphology in this functionality. This study clearly demonstrates the unique advantage of holey 2D nanosheet morphology in exploring economically feasible transition metal oxide‐based electrocatalysts and electrodes for Li–O2 batteries.

中文翻译:

多孔的二维低价锰氧化物纳米片,具有出色的氧催化活性和高功能性,可作为Li–O2电池的催化剂

低价Mn 2 O 3的多孔2D纳米片可以通过剥离层状MnO 2纳米片的热诱导相变合成。层状MnO 2纳米片在高温下的热处理不仅导致过渡为低价锰氧化物,而且还导致在2D纳米片微晶中形成表面孔。尽管有明显的相变,但前体MnO 2材料的高度各向异性的2D形态在热处理后仍然完好无损,而表面孔的直径随加热温度的升高而变大。所得多孔2D Mn 2 O 3纳米片显示出有希望的用于氧释放反应的电催化剂性能,远优于无孔Mn 2 O 3晶体。在本材料中,在500°C下煅烧的多孔Mn 2 O 3纳米片显示出最佳的电催化剂功能,且过电势明显降低,表明加热条件对优化电催化活性的重要性。最重要的是,这种材料对Li–O 2电池的催化活性比无孔Mn 2 O 3更好。,强调了多孔2D形态在此功能中的关键作用。这项研究清楚地证明了多孔2D纳米片形态的独特优势,在探索经济上可行的基于过渡金属氧化物的Li–O 2电池电催化剂和电极方面。
更新日期:2018-02-20
down
wechat
bug