当前位置: X-MOL 学术Compos. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
3D printing two-dimensional periodic structures to tailor in-plane dynamic responses and fracture behaviors
Composites Science and Technology ( IF 8.3 ) Pub Date : 2018-05-01 , DOI: 10.1016/j.compscitech.2018.02.024
Ming Lei , Craig M. Hamel , Chao Yuan , Haibao Lu , H. Jerry Qi

Abstract High-performance biological structural materials such as bone and spider silk have evolved soft and stiff components to optimize the load transfer path. This inspired many researchers to achieve engineering composites with significantly improved properties. In this paper, we designed a class of 2D elastomer filled composites with periodic units. The designs of these composites were realized by 3D printing of a soft elastomer and a stiff plastic. The plastic constructed a honeycomb-like mesh, in which the soft elastomer formed isolated inclusions. Variation of the mesh geometries, the elastomer content, and the constituent material properties could tune the in-plane dynamic responses and fracture behaviors. Dynamic mechanical analysis measurements showed two tanδ peaks, corresponding to the elastomer and the plastic. By changing the geometry, a very wide range of storage modulus values (about three orders of magnitudes) could be achieved at room temperature. The fracture strain of the composites was found to increase with the elastomer content, and an obvious brittle-ductile transition was observed. Tough samples showed several stress plateaus and a trumpet-shaped crack profile. Increasing the vertex angles of the rhombus filler geometry was found to result in a brittle-ductile transition. In both experiments and simulations, a forward-backward crack propagation mode was observed, indicating that soft elastomer inclusions stabilize the crack propagation. Compared to staggered composites with stiff inclusions, the current design with soft inclusions showed higher modulus, tensile strength and toughness.

中文翻译:

3D 打印二维周期性结构以定制面内动态响应和断裂行为

摘要 骨骼和蜘蛛丝等高性能生物结构材料已经进化出柔软和坚硬的成分来优化载荷传递路径。这激发了许多研究人员获得性能显着改善的工程复合材料。在本文中,我们设计了一类具有周期单元的二维弹性体填充复合材料。这些复合材料的设计是通过软弹性体和硬塑料的 3D 打印实现的。塑料构建了一个蜂窝状的网,其中软弹性体形成了孤立的夹杂物。网格几何形状、弹性体含量和组成材料特性的变化可以调整面内动态响应和断裂行为。动态力学分析测量显示两个 tanδ 峰,对应于弹性体和塑料。通过改变几何形状,可以在室温下实现非常广泛的储能模量值(大约三个数量级)。发现复合材料的断裂应变随着弹性体含量的增加而增加,并观察到明显的脆-韧转变。坚韧的样品显示出几个应力平台和喇叭形裂纹轮廓。发现增加菱形填料几何形状的顶角会导致脆性-韧性转变。在实验和模拟中,都观察到了向前-向后的裂纹扩展模式,表明软弹性体夹杂物稳定了裂纹扩展。与具有硬夹杂物的交错复合材料相比,目前具有软夹杂物的设计显示出更高的模量、拉伸强度和韧性。在室温下可以实现非常广泛的储能模量值(大约三个数量级)。发现复合材料的断裂应变随着弹性体含量的增加而增加,并观察到明显的脆-韧转变。坚韧的样品显示出几个应力平台和喇叭形裂纹轮廓。发现增加菱形填料几何形状的顶角会导致脆性-韧性转变。在实验和模拟中,都观察到了向前-向后的裂纹扩展模式,表明软弹性体夹杂物稳定了裂纹扩展。与具有硬夹杂物的交错复合材料相比,目前具有软夹杂物的设计显示出更高的模量、拉伸强度和韧性。在室温下可以实现非常广泛的储能模量值(大约三个数量级)。发现复合材料的断裂应变随着弹性体含量的增加而增加,并观察到明显的脆-韧转变。坚韧的样品显示出几个应力平台和喇叭形裂纹轮廓。发现增加菱形填料几何形状的顶角会导致脆性-韧性转变。在实验和模拟中,观察到向前-向后的裂纹扩展模式,表明软弹性体夹杂物稳定了裂纹扩展。与具有硬夹杂物的交错复合材料相比,目前具有软夹杂物的设计显示出更高的模量、拉伸强度和韧性。发现复合材料的断裂应变随着弹性体含量的增加而增加,并观察到明显的脆-韧转变。坚韧的样品显示出几个应力平台和喇叭形裂纹轮廓。发现增加菱形填料几何形状的顶角会导致脆性-韧性转变。在实验和模拟中,都观察到了向前-向后的裂纹扩展模式,表明软弹性体夹杂物稳定了裂纹扩展。与具有硬夹杂物的交错复合材料相比,目前具有软夹杂物的设计显示出更高的模量、拉伸强度和韧性。发现复合材料的断裂应变随着弹性体含量的增加而增加,并观察到明显的脆-韧转变。坚韧的样品显示出几个应力平台和喇叭形裂纹轮廓。发现增加菱形填料几何形状的顶角会导致脆性-韧性转变。在实验和模拟中,都观察到了向前-向后的裂纹扩展模式,表明软弹性体夹杂物稳定了裂纹扩展。与具有硬夹杂物的交错复合材料相比,目前具有软夹杂物的设计显示出更高的模量、拉伸强度和韧性。发现增加菱形填料几何形状的顶角会导致脆性-韧性转变。在实验和模拟中,都观察到了向前-向后的裂纹扩展模式,表明软弹性体夹杂物稳定了裂纹扩展。与具有硬夹杂物的交错复合材料相比,目前具有软夹杂物的设计显示出更高的模量、拉伸强度和韧性。发现增加菱形填料几何形状的顶角会导致脆性-韧性转变。在实验和模拟中,观察到向前-向后的裂纹扩展模式,表明软弹性体夹杂物稳定了裂纹扩展。与具有硬夹杂物的交错复合材料相比,目前具有软夹杂物的设计显示出更高的模量、拉伸强度和韧性。
更新日期:2018-05-01
down
wechat
bug