当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Self‐Assembled Quasi‐3D Nanocomposite: A Novel p‐Type Hole Transport Layer for High Performance Inverted Organic Solar Cells
Advanced Functional Materials ( IF 19.0 ) Pub Date : 2018-02-14 , DOI: 10.1002/adfm.201706403
Jiaqi Cheng 1 , Hong Zhang 1 , Yong Zhao 1 , Jian Mao 1 , Can Li 1 , Shaoqing Zhang 2 , Kam Sing Wong 3 , Jianhui Hou 2 , Wallace C. H. Choy 1
Affiliation  

Hole transport layer (HTL) plays a critical role for achieving high performance solution‐processed optoelectronics including organic electronics. For organic solar cells (OSCs), the inverted structure has been widely adopted to achieve prolonged stability. However, there are limited studies of p‐type effective HTL on top of the organic active layer (hereafter named as top HTL) for inverted OSCs. Currently, p‐type top HTLs are mainly 2D materials, which have an intrinsic vertical conduction limitation and are too thin to function as practical HTL for large area optoelectronic applications. In the present study, a novel self‐assembled quasi‐3D nanocomposite is demonstrated as a p‐type top HTL. Remarkably, the novel HTL achieves ≈15 times enhanced conductivity and ≈16 times extended thickness compared to the 2D counterpart. By applying this novel HTL in inverted OSCs covering fullerene and non‐fullerene systems, device performance is significantly improved. The champion power conversion efficiency reaches 12.13%, which is the highest reported performance of solution processed HTL based inverted OSCs. Furthermore, the stability of OSCs is dramatically enhanced compared with conventional devices. The work contributes to not only evolving the highly stable and large scale OSCs for practical applications but also diversifying the strategies to improve device performance.

中文翻译:

自组装的准3D纳米复合材料:用于高性能倒置有机太阳能电池的新型p型空穴传输层

空穴传输层(HTL)在实现高性能解决方案处理的光电子学(包括有机电子学)中起着至关重要的作用。对于有机太阳能电池(OSC),倒置结构已被广泛采用以实现更长的稳定性。但是,对于有机OSC的有机活性层顶部的p型有效HTL(以下称为顶部HTL)的研究很少。当前,p型顶部HTL主要是2D材料,具有固有的垂直传导限制,并且太薄而无法用作大面积光电应用的实用HTL。在本研究中,一种新型的自组装准3D纳米复合材料被证明为ap型顶级HTL。值得注意的是,与2D同类产品相比,新型HTL的电导率提高了约15倍,厚度扩展了约16倍。通过在覆盖富勒烯和非富勒烯体系的反向OSC中应用这种新颖的HTL,可以显着提高器件性能。最高的功率转换效率达到12.13%,这是基于解决方案处理的基于HTL的反向OSC的最高报告性能。此外,与传统设备相比,OSC的稳定性大大提高。这项工作不仅有助于发展用于实际应用的高度稳定和大规模的OSC,而且有助于提高设备性能的战略多样化。与传统设备相比,OSC的稳定性大大提高。这项工作不仅有助于发展用于实际应用的高度稳定和大规模的OSC,而且有助于提高设备性能的战略多样化。与传统设备相比,OSC的稳定性大大提高。这项工作不仅有助于发展用于实际应用的高度稳定和大规模的OSC,而且有助于提高设备性能的战略多样化。
更新日期:2018-02-14
down
wechat
bug