当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In Situ Grown Epitaxial Heterojunction Exhibits High‐Performance Electrocatalytic Water Splitting
Advanced Materials ( IF 29.4 ) Pub Date : 2018-02-13 , DOI: 10.1002/adma.201705516
Changrong Zhu 1, 2 , An‐Liang Wang 3 , Wen Xiao 4 , Dongliang Chao 1 , Xiao Zhang 3 , Nguyen Huy Tiep 1 , Shi Chen 1 , Jiani Kang 1 , Xin Wang 2 , Jun Ding 4 , John Wang 4 , Hua Zhang 3 , Hong Jin Fan 1
Affiliation  

Electrocatalytic performance can be enhanced by engineering a purposely designed nanoheterojunction and fine‐tuning the interface electronic structure. Herein a new approach of developing atomic epitaxial in‐growth in Co‐Ni3N nanowires array is devised, where a nanoconfinement effect is reinforced at the interface. The Co‐Ni3N heterostructure array is formed by thermal annealing NiCo2O4 precursor nanowires under an optimized condition, during which the nanowire morphology is retained. The epitaxial in‐growth structure of Co‐Ni3N at nanometer scale facilitates the electron transfer between the two different domains at the epitaxial interface, leading to a significant enhancement in catalytic activities for both hydrogen and oxygen evolution reactions (10 and 16 times higher in the respective turn‐over frequency compared to Ni3N‐alone nanorods). The interface transfer effect is verified by electronic binding energy shift and density functional theory (DFT) calculations. This nanoconfinement effect occurring during in situ atomic epitaxial in‐growth of the two compatible materials shows an effective pathway toward high‐performance electrocatalysis and energy storages.

中文翻译:

原位生长的外延异质结表现出高性能的电催化水分解

通过设计专门设计的纳米异质结并微调界面电子结构,可以提高电催化性能。本文设计了一种在Co-Ni 3 N纳米线阵列中发展原子外延生长的新方法,其中在界面处增强了纳米约束作用。Co-Ni 3 N异质结构阵列是通过在优化条件下对NiCo 2 O 4前驱体纳米线进行热退火而形成的,在此过程中纳米线的形态得以保留。Co-Ni 3的外延生长结构纳米级的N促进了外延界面上两个不同域之间的电子转移,从而显着提高了氢气和氧气逸出反应的催化活性(与Ni 3相比,各自的周转频率分别高10到16倍)N个单独的纳米棒)。通过电子结合能转移和密度泛函理论(DFT)计算验证了界面转移效应。在两种兼容材料的原位原子外延生长过程中发生的这种纳米约束效应显示了通往高性能电催化和能量存储的有效途径。
更新日期:2018-02-13
down
wechat
bug