当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineered Living Materials: Prospects and Challenges for Using Biological Systems to Direct the Assembly of Smart Materials
Advanced Materials ( IF 29.4 ) Pub Date : 2018-02-12 , DOI: 10.1002/adma.201704847
Peter Q Nguyen 1 , Noémie-Manuelle Dorval Courchesne 1 , Anna Duraj-Thatte 1 , Pichet Praveschotinunt 1 , Neel S Joshi 1
Affiliation  

Vast potential exists for the development of novel, engineered platforms that manipulate biology for the production of programmed advanced materials. Such systems would possess the autonomous, adaptive, and self‐healing characteristics of living organisms, but would be engineered with the goal of assembling bulk materials with designer physicochemical or mechanical properties, across multiple length scales. Early efforts toward such engineered living materials (ELMs) are reviewed here, with an emphasis on engineered bacterial systems, living composite materials which integrate inorganic components, successful examples of large‐scale implementation, and production methods. In addition, a conceptual exploration of the fundamental criteria of ELM technology and its future challenges is presented. Cradled within the rich intersection of synthetic biology and self‐assembling materials, the development of ELM technologies allows the power of biology to be leveraged to grow complex structures and objects using a palette of bio‐nanomaterials.

中文翻译:

工程活性材料:使用生物系统指导智能材料组装的前景和挑战

开发新颖的工程平台存在巨大的潜力,这些平台可以操纵生物学来生产编程的先进材料。此类系统将具有生物体的自主性、适应性和自愈特性,但其设计目标是在多个长度尺度上组装具有设计师设计的物理化学或机械特性的散装材料。本文回顾了此类工程活性材料(ELM)的早期研究,重点是工程细菌系统、集成无机成分的活性复合材料、大规模实施的成功范例以及生产方法。此外,还对 ELM 技术的基本标准及其未来挑战进行了概念性探索。依托合成生物学和自组装材料的丰富交叉点,ELM 技术的发展允许利用生物学的力量,使用一系列生物纳米材料来生长复杂的结构和物体。
更新日期:2018-02-12
down
wechat
bug