当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Structuring of Hydrogels across Multiple Length Scales for Biomedical Applications
Advanced Materials ( IF 27.4 ) Pub Date : 2018-02-12 , DOI: 10.1002/adma.201705013
Megan E. Cooke 1, 2 , Simon W. Jones 2 , Britt ter Horst 1, 3 , Naiem Moiemen 3 , Martyn Snow 1 , Gurpreet Chouhan 1 , Lisa J. Hill 4 , Maryam Esmaeli 4 , Richard J. A. Moakes 1 , James Holton 1 , Rajpal Nandra 1 , Richard L. Williams 1 , Alan M. Smith 5 , Liam M. Grover 1
Affiliation  

The development of new materials for clinical use is limited by an onerous regulatory framework, which means that taking a completely new material into the clinic can make translation economically unfeasible. One way to get around this issue is to structure materials that are already approved by the regulator, such that they exhibit very distinct physical properties and can be used in a broader range of clinical applications. Here, the focus is on the structuring of soft materials at multiple length scales by modifying processing conditions. By applying shear to newly forming materials, it is possible to trigger molecular reorganization of polymer chains, such that they aggregate to form particles and ribbon‐like structures. These structures then weakly interact at zero shear forming a solid‐like material. The resulting self‐healing network is of particular use for a range of different biomedical applications. How these materials are used to allow the delivery of therapeutic entities (cells and proteins) and as a support for additive layer manufacturing of larger‐scale tissue constructs is discussed. This technology enables the development of a range of novel materials and structures for tissue augmentation and regeneration.

中文翻译:

用于生物医学应用的跨多个长度尺度的水凝胶结构。

繁重的监管框架限制了用于临床的新材料的开发,这意味着将全新的材料带入临床可能使翻译在经济上不可行。解决该问题的一种方法是构造经过监管机构批准的材料,使其具有非常不同的物理特性,并可以在更广泛的临床应用中使用。在这里,重点是通过修改加工条件以多种长度尺度构造软质材料。通过对新形成的材料施加剪切力,有可能触发聚合物链的分子重组,使它们聚集形成颗粒和带状结构。然后,这些结构在零剪切时会弱相互作用,从而形成固体状的材料。由此产生的自我修复网络特别适用于一系列不同的生物医学应用。讨论了如何使用这些材料来递送治疗实体(细胞和蛋白质),以及如何支持大规模组织构建体的附加层制造。这项技术使得能够开发出用于组织增强和再生的一系列新型材料和结构。
更新日期:2018-02-12
down
wechat
bug