当前位置: X-MOL 学术Particuology › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
CFD simulation of gas–solid flow patterns in a downscaled combustor-style FCC regenerator
Particuology ( IF 3.5 ) Pub Date : 2018-02-09 , DOI: 10.1016/j.partic.2017.10.009
Abbas Azarnivand , Yaghoub Behjat , Ali Akbar Safekordi

To investigate the gas–solid flow pattern of a combustor-style fluid catalytic cracking regenerator, a laboratory-scale regenerator was designed. In scaling down from an actual regenerator, large-diameter hydrodynamic effects were taken into consideration. These considerations are the novelties of the present study. Applying the Eulerian–Eulerian approach, a three-dimensional computational fluid dynamics (CFD) model of the regenerator was developed. Using this model, various aspects of the hydrodynamic behavior that are potentially effective in catalyst regeneration were investigated. The CFD simulation results show that at various sections the gas–solid flow patterns exhibit different behavior because of the asymmetric location of the catalyst inlets and the lift outlets. The ratio of the recirculated catalyst to spent catalyst determines the quality of the spent and recirculated catalyst mixing and distribution because the location and quality of vortices change in the lower part of the combustor. The simulation results show that recirculated catalyst considerably reduces the air bypass that disperses the catalyst particles widely over the cross section. Decreasing the velocity of superficial air produces a complex flow pattern whereas the variation in catalyst mass flux does not alter the flow pattern significantly as the flow is dilute.



中文翻译:

小型燃烧器式FCC再生器中气固流型的CFD模拟

为了研究燃烧器式流体催化裂化再生器的气固流型,设计了实验室规模的再生器。从实际的再生器按比例缩小时,已考虑到大直径流体动力效应。这些考虑是本研究的新颖之处。应用欧拉-欧拉方法,建立了蓄热室的三维计算流体动力学(CFD)模型。使用该模型,研究了在催化剂再生中潜在有效的流体动力学行为的各个方面。CFD仿真结果表明,由于催化剂入口和提升出口的位置不对称,气固两相流型表现出不同的行为。再循环催化剂与废催化剂的比例决定了废催化剂和再循环催化剂混合和分配的质量,因为涡流的位置和质量在燃烧器下部中发生变化。模拟结果表明,再循环的催化剂大大减少了空气旁路,该空气旁路使催化剂颗粒广泛分散在整个横截面上。降低表面空气的速度会产生复杂的流动模式,而催化剂质量通量的变化不会随流动稀释而显着改变流动模式。模拟结果表明,再循环的催化剂大大减少了空气旁路,该空气旁路使催化剂颗粒广泛分散在整个横截面上。降低表面空气的速度会产生复杂的流动模式,而催化剂质量通量的变化不会随流动稀释而显着改变流动模式。模拟结果表明,再循环的催化剂大大减少了空气旁路,该空气旁路使催化剂颗粒广泛分散在整个横截面上。降低表面空气的速度会产生复杂的流动模式,而催化剂质量通量的变化不会随流动稀释而显着改变流动模式。

更新日期:2018-02-09
down
wechat
bug