当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Advances in Manganese‐Based Oxides Cathodic Electrocatalysts for Li–Air Batteries
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2018-02-09 , DOI: 10.1002/adfm.201704973
Bao Liu 1, 2, 3 , Yinglun Sun 1, 3 , Li Liu 2 , Shan Xu 2 , Xingbin Yan 1
Affiliation  

Li–air batteries, characteristic of superhigh theoretical specific energy density, cost‐efficiency, and environment‐friendly merits, have aroused ever‐increasing attention. Nevertheless, relatively low Coulomb efficiency, severe potential hysteresis, and poor rate capability, which mainly result from sluggish oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) kinetics, as well as pitiful cycle stability caused by parasitic reactions, extremely limit their practical applications. Manganese (Mn)‐based oxides and their composites can exhibit high ORR and OER activities, reduce charge/discharge overpotential, and improve the cycling stability when used as cathodic catalyst materials. Herein, energy storage mechanisms for Li–air batteries are summarized, followed by a systematic overview of the progress of manganese‐based oxides (MnO2 with different crystal structures, MnO, MnOOH, Mn2O3, Mn3O4, MnOx, perovskite‐type and spinel‐type manganese oxides, etc.) cathodic materials for Li–air batteries in the recent years. The focus lies on the effects of crystal structure, design strategy, chemical composition, and microscopic physical parameters on ORR and OER activities of various Mn‐based oxides, and even the overall performance of Li–air batteries. Finally, a prospect of the research for Mn‐based oxides cathodic catalysts in the future is made, and some new insights for more reasonable design of Mn‐based oxides electrocatalysts with higher catalytic efficiency are provided.

中文翻译:

锂空气电池锰基氧化物阴极电催化剂的研究进展

锂空气电池具有极高的理论比能量密度,成本效益和环保优点的特点,引起了越来越多的关注。然而,相对较低的库仑效率,严重的潜在滞后和较差的速率能力,这主要是由于缓慢的氧气析出反应(OER)和氧气还原反应(ORR)动力学,以及由寄生反应引起的可怜的循环稳定性所致,极大地限制了其实际应用。锰(Mn)基氧化物及其复合材料在用作阴极催化剂材料时,可以表现出高的ORR和OER活性,减少充/放电超电势并改善循环稳定性。本文对锂空气电池的储能机理进行了总结,随后对锰基氧化物(MnO2近年来,用于锂离子空气电池的正极材料具有不同的晶体结构,包括MnO,MnOOH,Mn 2 O 3,Mn 3 O 4,MnOx,钙钛矿型和尖晶石型锰氧化物等。重点在于各种锰基氧化物的晶体结构,设计策略,化学成分和微观物理参数对ORR和OER活性的影响,甚至对锂空气电池的整体性能的影响。最后,对未来锰基氧化物阴极催化剂的研究前景进行了展望,并为更合理设计具有更高催化效率的锰基氧化物电催化剂提供了一些新见解。
更新日期:2018-02-09
down
wechat
bug