当前位置: X-MOL 学术ChemElectroChem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigating the Role of Oxygen Vacancies and Lattice Strain Defects on the Enhanced Photoelectrochemical Property of Alkali Metal (Li, Na, and K) Doped ZnO Nanorod Photoanodes
ChemElectroChem ( IF 3.5 ) Pub Date : 2018-02-20 , DOI: 10.1002/celc.201800097
Keshab Karmakar 1 , Ayan Sarkar 2 , Kalyan Mandal 1 , Gobinda Gopal Khan 3
Affiliation  

This work demonstrates the significance of defect engineering in tuning the visible‐light‐driven photoelectrochemical property of alkali metal (Li, Na, and K) doped ZnO nanorods. The large concentration of oxygen vacancies introduced into the sub‐bandgap, because of alkali metal doping, serve as the light‐absorbing donor sites and also photoelectron recombination centers, resulting in the enhanced photocurrent and hole separation in the valance band. The lattice strain developed in the nanorods, owing to doping, contributes to the easy electron transportation and mobility. Defect engineering also tunes the electronic structure of photoanodes, resulting in bandgap modification and band edge engineering, boosting charge‐carrier migration and reduced electron−hole pair recombination for enhanced oxygen evolution.

中文翻译:

研究氧空位和晶格应变缺陷对碱金属(Li,Na和K)掺杂的ZnO纳米棒光阳极增强光电化学性能的作用

这项工作证明了缺陷工程在调节碱金属(Li,Na和K)掺杂的ZnO纳米棒的可见光驱动的光电化学性质中的重要性。由于碱金属的掺杂,亚带隙中引入了大量的氧空位,这些光空位既是光吸收供体位点,又是光电子复合中心,从而导致价带中的光电流和空穴间距增强。由于掺杂,在纳米棒中产生的晶格应变有助于容易的电子传输和迁移。缺陷工程还可以调节光阳极的电子结构,从而实现带隙修饰和能带边缘工程,从而促进电荷载流子迁移并减少电子-空穴对的重组,从而增强氧的释放。
更新日期:2018-02-20
down
wechat
bug