当前位置: X-MOL 学术Biomacromolecules › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Self-Standing Nanocellulose Janus-Type Films with Aldehyde and Carboxyl Functionalities
Biomacromolecules ( IF 5.5 ) Pub Date : 2018-02-07 00:00:00 , DOI: 10.1021/acs.biomac.7b01751
Tiina Nypelö 1 , Hassan Amer 2 , Johannes Konnerth , Antje Potthast , Thomas Rosenau
Affiliation  

Nanocellulose-based self-standing films are becoming a substrate for flexible electronics, diagnostics, and sensors. Strength and surface chemistry are vital variables for these film-based endeavors, the former is one of the assets of nanocellulose. To contribute to the latter, nanocellulose films are tuned with a side-specific functionalization, having an aldehyde and a carboxyl side. The functionalities were obtained combining premodification of the film components by periodate oxidation with ozone post-treatment. Periodate oxidation of cellulose nanocrystals results in film components that interact through intra- and intermolecular hemiacetals and lead to films with an elastic modulus of 11 GPa. The ozone treatment of one film side induces conversion of the aldehyde into carboxyl functionalities. The ozone treatment on individual crystals was largely destructive. Remarkably, such degradation is not observed for the self-standing film, and the film strength at break is preserved. Preserving a physically intact film despite ozone treatment is a credit to using the dry film structure held together by interparticle covalent linkages. Additionally, gas-phase post-treatment avoids disintegration that could result from immersion into solvents. The crystalline cellulose “Janus” film is suggested as an interfacial component in biomaterial engineering, separation technology, or in layered composite materials for tunable affinity between the layers.

中文翻译:

具有醛和羧基官能团的自立式纳米纤维素Janus型薄膜

基于纳米纤维素的自立膜正成为柔性电子,诊断和传感器的基材。强度和表面化学性质是这些基于薄膜的研究的重要变量,前者是纳米纤维素的资产之一。为了有助于后者,用具有醛和羧基侧的侧特异性官能化来调节纳米纤维素膜。通过高碘酸氧化对膜成分进行预改性与臭氧后处理相结合,获得了功能性。纤维素纳米晶体的高碘酸盐氧化会导致薄膜成分通过分子内和分子间半缩醛相互作用,并产生具有11 GPa弹性模量的薄膜。一层膜的臭氧处理可将醛转化为羧基官能团。对单个晶体的臭氧处理在很大程度上具有破坏性。显着地,对于自支撑膜未观察到这种降解,并且保留了断裂时的膜强度。尽管进行了臭氧处理,仍保留了物理上完整的薄膜,这归功于使用通过颗粒间共价键连接在一起的干膜结构。此外,气相后处理可避免因浸入溶剂而导致的崩解。结晶纤维素“ Janus”薄膜被建议作为生物材料工程,分离技术或层状复合材料中的界面组分,以实现层之间的可调亲和力。尽管进行了臭氧处理,仍保留了物理上完整的薄膜,这归功于使用通过粒子间共价键保持在一起的干膜结构。此外,气相后处理可避免因浸入溶剂而导致的崩解。结晶纤维素“ Janus”薄膜被建议作为生物材料工程,分离技术或层状复合材料中的界面组分,以实现层之间的可调亲和力。尽管进行了臭氧处理,仍保留了物理上完整的薄膜,这归功于使用通过颗粒间共价键连接在一起的干膜结构。此外,气相后处理可避免因浸入溶剂而导致的崩解。结晶纤维素“ Janus”薄膜被建议作为生物材料工程,分离技术或层状复合材料中的界面组分,以实现层之间的可调亲和力。
更新日期:2018-02-07
down
wechat
bug