当前位置: X-MOL 学术Nanoscale › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Probing the shear modulus of two-dimensional multiplanar nanostructures and heterostructures
Nanoscale ( IF 5.8 ) Pub Date : 2018-02-07 00:00:00 , DOI: 10.1039/c7nr07261a
T. Mukhopadhyay 1, 2, 3, 4 , A. Mahata 5, 6, 7, 8 , S. Adhikari 4, 9, 10, 11 , M. Asle Zaeem 5, 6, 7, 8
Affiliation  

Generalized high-fidelity closed-form formulae have been developed to predict the shear modulus of hexagonal graphene-like monolayer nanostructures and nano-heterostructures based on a physically insightful analytical approach. Hexagonal nano-structural forms (top view) are common for nanomaterials with monoplanar (such as graphene and hBN) and multiplanar (such as stanene and MoS2) configurations. However, a single-layer nanomaterial may not possess a particular property adequately, or multiple desired properties simultaneously. Recently, a new trend has emerged to develop nano-heterostructures by assembling multiple monolayers of different nanostructures to achieve various tunable desired properties simultaneously. Shear modulus assumes an important role in characterizing the applicability of different two-dimensional nanomaterials and heterostructures in various nanoelectromechanical systems such as determining the resonance frequency of vibration modes involving torsion, wrinkling and rippling behavior of two-dimensional materials. We have developed mechanics-based closed-form formulae for the shear modulus of monolayer nanostructures and multi-layer nano-heterostructures. New results of shear modulus are presented for different classes of nanostructures (graphene, hBN, stanene and MoS2) and nano-heterostructures (graphene–hBN, graphene–MoS2, graphene–stanene and stanene–MoS2), which are categorized on the basis of fundamental structural configurations. The numerical values of shear modulus are compared with the results from the scientific literature (as available) and separate molecular dynamics simulations, wherein a good agreement is noticed. The proposed analytical expressions will enable the scientific community to efficiently evaluate shear modulus of a wide range of nanostructures and nanoheterostructures.

中文翻译:

探究二维多平面纳米结构和异质结构的剪切模量

已经开发了一种通用的高保真闭合形式公式,该公式基于物理上有洞察力的分析方法来预测六角形石墨烯状单层纳米结构和纳米异质结构的剪切模量。六边形纳米结构形式(顶视图)通常用于具有单平面(例如石墨烯和hBN)和多平面(例如stanene和MoS 2)的纳米材料)配置。然而,单层纳米材料可能不具有适当的特定性质,或同时具有多个所需性质。近来,出现了通过组装具有不同纳米结构的多个单层以同时实现各种可调的所需特性来开发纳米异质结构的新趋势。剪切模量在表征不同的二维纳米材料和异质结构在各种纳米机电系统中的适用性方面起着重要作用,例如确定涉及二维材料的扭转,起皱和波纹行为的振动模式的共振频率。我们已经为单层纳米结构和多层纳米异质结构的剪切模量开发了基于力学的封闭形式公式。2)和纳米异质结构(石墨烯-hBN,石墨烯-MoS 2,石墨烯-锡烯和锡烯-MoS 2),它们是根据基本结构构型进行分类的。将剪切模量的数值与科学文献(如可用)和单独的分子动力学模拟的结果进行比较,其中发现了良好的一致性。拟议的分析表达式将使科学界能够有效地评估各种纳米结构和纳米异质结构的剪切模量。
更新日期:2018-02-07
down
wechat
bug