当前位置: X-MOL 学术Prog. Mater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Metal recovery by microbial electro-metallurgy
Progress in Materials Science ( IF 33.6 ) Pub Date : 2018-05-01 , DOI: 10.1016/j.pmatsci.2018.01.007
Xochitl Dominguez-Benetton , Jeet Chandrakant Varia , Guillermo Pozo , Oskar Modin , Annemiek Ter Heijne , Jan Fransaer , Korneel Rabaey

Raw metals are fundamental to the global economy as they are essential to maintain the quality of our life as well as industrial performance. A number of metal-bearing aqueous matrices are appealing as alternative supplies to conventional mining, like solid industrial and urban waste leachates, wastewaters and even some natural extreme environments (e.g. deep marine sediments, geothermal brines). Some of these sources are already managed for recovery, while others are not suitable either because they are too low in content of recoverable metals or they contain too many impurities that would interfere with classical recovery processes or would be cost-prohibitive. Microbial electro-metallurgy, which results from the interactions between microorganisms, metals and electrodes, in which the electron transfer chain associated with microbial respiration plays a key role, can contribute to overcome these challenges. This review provides the state of the art on this subject, and summarizes the general routes through which microbes can catalyse or support metal recovery, leading to nano- and macro-scale materials. Competing sorption and electrochemical technologies are briefly revisited. The relevant sources of metals are highlighted as well as the challenges and opportunities to turn microbial electro-metallurgy into a sustainable industrial technology in the near future. Finally, an outlook to pursue functional materials through microbial electrometallurgy is provided.

中文翻译:

微生物电冶金法回收金属

原材料是全球经济的基础,因为它们对于维持我们的生活质量和工业绩效至关重要。许多含金属的水性基质作为传统采矿的替代品很有吸引力,如固体工业和城市垃圾渗滤液、废水甚至一些自然极端环境(例如深海沉积物、地热盐水)。其中一些来源已经进行了回收管理,而其他来源则不适合,因为它们的可回收金属含量太低,或者它们含有过多会干扰传统回收过程或成本过高的杂质。微生物电冶金,源于微生物、金属和电极之间的相互作用,其中与微生物呼吸相关的电子转移链起着关键作用,可以帮助克服这些挑战。这篇综述提供了关于这个主题的最新技术,并总结了微生物催化或支持金属回收的一般途径,从而产生纳米和宏观尺度的材料。简要回顾了相互竞争的吸附和电化学技术。重点介绍了金属的相关来源以及在不久的将来将微生物电冶金转变为可持续工业技术的挑战和机遇。最后,提供了通过微生物电冶金追求功能材料的前景。并总结了微生物催化或支持金属回收的一般途径,从而产生纳米和宏观尺度的材料。简要回顾了相互竞争的吸附和电化学技术。重点介绍了金属的相关来源以及在不久的将来将微生物电冶金转变为可持续工业技术的挑战和机遇。最后,提供了通过微生物电冶金追求功能材料的前景。并总结了微生物催化或支持金属回收的一般途径,从而产生纳米和宏观尺度的材料。简要回顾了相互竞争的吸附和电化学技术。重点介绍了金属的相关来源以及在不久的将来将微生物电冶金转变为可持续工业技术的挑战和机遇。最后,提供了通过微生物电冶金追求功能材料的前景。重点介绍了金属的相关来源以及在不久的将来将微生物电冶金转变为可持续工业技术的挑战和机遇。最后,提供了通过微生物电冶金追求功能材料的前景。重点介绍了金属的相关来源以及在不久的将来将微生物电冶金转变为可持续工业技术的挑战和机遇。最后,提供了通过微生物电冶金追求功能材料的前景。
更新日期:2018-05-01
down
wechat
bug