当前位置: X-MOL 学术J. Chromatogr. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Surface enhanced Raman spectroscopy in microchip electrophoresis
Journal of Chromatography A ( IF 4.1 ) Pub Date : 2018-02-06 , DOI: 10.1016/j.chroma.2018.02.014
Anna Tycova , Renata F. Gerhardt , Detlev Belder

Coupling microchip capillary electrophoresis to surface enhanced Raman spectroscopy (MCE-SERS) combines the high separation power of capillary electrophoresis with the capability to obtain vibrational fingerprint spectra for compound identification. Raman spectroscopy is a structurally descriptive and label-free detection method which is particularly suited for chemical analysis because it is non-destructive and allows the identification of analytes. However, it suffers from poor sensitivity and sometimes even requires acquisition times far longer than the typical peak width of electrophoretic separations. The Raman intensity can be drastically improved if the analyte is brought into close proximity to nanostructured metal surfaces or colloids due to the surface enhancement effect. This paper presents a novel approach in the field of MCE-SERS on-line coupling. The key element of the developed glass microfluidic device is a dosing structure which consists of two side channels joining the MCE channel symmetrically after the electrophoretic separation of the analytes. The dosing channel supplies silver nanoparticles (Ag-NPs), to the separated electrophoretic zones which facilitates an on-the-fly recording of SERS-spectra of the separated compounds. The functionality of the MCE-SERS chip was evaluated by the analysis of a rhodamine model mixture within 90 s achieving RSD of migration times below 1.5%. The approach was successfully applied for the analysis of the food additive riboflavin in a barbecue sauce.



中文翻译:

微芯片电泳中的表面增强拉曼光谱

将微芯片毛细管电泳与表面增强拉曼光谱(MCE-SERS)耦合,将毛细管电泳的高分离能力与获得振动指纹图谱以进行化合物鉴定的能力结合在一起。拉曼光谱法是一种结构描述性且无标记的检测方法,特别适合于化学分析,因为它是非破坏性的并且可以鉴定分析物。但是,它的灵敏度很差,有时甚至需要比电泳分离的典型峰宽更长的采集时间。如果由于表面增强作用而使分析物与纳米结构金属表面或胶体非常接近,则可以极大地提高拉曼强度。本文提出了一种在MCE-SERS在线耦合领域中的新颖方法。研制的玻璃微流体装置的关键元件是定量给料结构,该定量给料结构由两个侧通道组成,该侧通道在电泳分离分析物后对称地连接MCE通道。定量给料通道将银纳米颗粒(Ag-NPs)提供给分离的电泳区,这有助于动态记录分离化合物的SERS光谱。通过对罗丹明模型混合物的分析在90 s内实现了MCE-SERS芯片的功能,以实现迁移时间的RSD低于1.5%。该方法已成功应用于烧烤酱中食品添加剂核黄素的分析。研制的玻璃微流体装置的关键元件是定量给料结构,该定量给料结构由两个侧通道组成,该侧通道在电泳分离分析物后对称地连接MCE通道。定量给料通道将银纳米颗粒(Ag-NPs)提供给分离的电泳区,这有助于动态记录分离化合物的SERS光谱。通过对罗丹明模型混合物的分析在90 s内实现了MCE-SERS芯片的功能,以实现迁移时间的RSD低于1.5%。该方法已成功应用于烧烤酱中食品添加剂核黄素的分析。研制的玻璃微流体装置的关键元件是定量给料结构,该定量给料结构由两个侧通道组成,该侧通道在电泳分离分析物后对称地连接MCE通道。定量给料通道将银纳米颗粒(Ag-NPs)提供给分离的电泳区,这有助于动态记录分离化合物的SERS光谱。通过对罗丹明模型混合物的分析在90 s内实现了MCE-SERS芯片的功能,以实现迁移时间的RSD低于1.5%。该方法已成功应用于烧烤酱中食品添加剂核黄素的分析。到分离的电泳区,这有助于动态记录分离化合物的SERS光谱。通过对罗丹明模型混合物的分析在90 s内实现了MCE-SERS芯片的功能,以实现迁移时间的RSD低于1.5%。该方法已成功应用于烧烤酱中食品添加剂核黄素的分析。到分离的电泳区,这有助于动态记录分离化合物的SERS光谱。通过对罗丹明模型混合物的分析在90 s内实现了MCE-SERS芯片的功能,以实现迁移时间的RSD低于1.5%。该方法已成功应用于烧烤酱中食品添加剂核黄素的分析。

更新日期:2018-02-06
down
wechat
bug