当前位置: X-MOL 学术Nat. Microbiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The host-encoded RNase E endonuclease as the crRNA maturation enzyme in a CRISPR-Cas subtype III-Bv system.
Nature Microbiology ( IF 28.3 ) Pub Date : 2018-Mar-01 , DOI: 10.1038/s41564-017-0103-5
Juliane Behler , Kundan Sharma , Viktoria Reimann , Annegret Wilde , Henning Urlaub , Wolfgang R. Hess

Specialized RNA endonucleases for the maturation of clustered regularly interspaced short palindromic repeat (CRISPR)-derived RNAs (crRNAs) are critical in CRISPR-CRISPR-associated protein (Cas) defence mechanisms. The Cas6 and Cas5d enzymes are the RNA endonucleases in many class 1 CRISPR-Cas systems. In some class 2 systems, maturation and effector functions are combined within a single enzyme or maturation proceeds through the combined actions of RNase III and trans-activating CRISPR RNAs (tracrRNAs). Three separate CRISPR-Cas systems exist in the cyanobacterium Synechocystis sp. PCC 6803. Whereas Cas6-type enzymes act in two of these systems, the third, which is classified as subtype III-B variant (III-Bv), lacks cas6 homologues. Instead, the maturation of crRNAs proceeds through the activity of endoribonuclease E, leaving unusual 13- and 14-nucleotide-long 5'-handles. Overexpression of RNase E leads to overaccumulation and knock-down to the reduced accumulation of crRNAs in vivo, suggesting that RNase E is the limiting factor for CRISPR complex formation. Recognition by RNase E depends on a stem-loop in the CRISPR repeat, whereas base substitutions at the cleavage site trigger the appearance of secondary products, consistent with a two-step recognition and cleavage mechanism. These results suggest the adaptation of an otherwise very conserved housekeeping enzyme to accommodate new substrates and illuminate the impressive plasticity of CRISPR-Cas systems that enables them to function in particular genomic environments.

中文翻译:

宿主编码的RNase E核酸内切酶作为CRISPR-Cas III-Bv亚型系统中的crRNA成熟酶。

专门的RNA内切核酸酶,用于成熟的簇状规则间隔的短回文重复序列(CRISPR)衍生的RNA(crRNA)在CRISPR-CRISPR相关蛋白(Cas)防御机制中至关重要。Cas6和Cas5d酶是许多1类CRISPR-Cas系统中的RNA内切酶。在某些2类系统中,成熟功能和效应子功能在单个酶中结合,或者成熟过程是通过RNase III和反式激活CRISPR RNA(tracrRNA)的联合作用而进行的。蓝细菌Synechocystis sp。中存在三个独立的CRISPR-Cas系统。PCC6803。而Cas6型酶在其中两个系统中起作用,而第三个被分类为III-B亚型变体(III-Bv)的酶则缺少cas6同源物。相反,crRNA的成熟通过核糖核酸内切酶E的活性进行,留下不寻常的13和14个核苷酸长的5'手柄。RNase E的过量表达导致体内crRNA的过度积累和敲除,从而降低了crRNA的积累,这表明RNase E是CRISPR复合物形成的限制因素。RNase E的识别取决于CRISPR重复序列中的茎环,而裂解位点的碱基取代则触发次级产物的出现,这与两步识别和裂解机制一致。这些结果表明,采用一种非常保守的管家酶以适应新的底物,并阐明了CRISPR-Cas系统令人印象深刻的可塑性,使它们能够在特定的基因组环境中发挥作用。RNase E的过量表达导致体内crRNA的过度积累和敲除,从而降低了crRNA的积累,这表明RNase E是CRISPR复合物形成的限制因素。RNase E的识别取决于CRISPR重复序列中的茎环,而裂解位点的碱基取代则触发次级产物的出现,这与两步识别和裂解机制一致。这些结果表明,采用一种非常保守的管家酶以适应新的底物,并阐明了CRISPR-Cas系统令人印象深刻的可塑性,使它们能够在特定的基因组环境中发挥作用。RNase E的过量表达导致体内crRNA的过度积累和敲除,从而降低了crRNA的积累,这表明RNase E是CRISPR复合物形成的限制因素。RNase E的识别取决于CRISPR重复序列中的茎环,而裂解位点的碱基取代则触发次级产物的出现,这与两步识别和裂解机制一致。这些结果表明,采用一种非常保守的管家酶以适应新的底物,并阐明了CRISPR-Cas系统令人印象深刻的可塑性,使它们能够在特定的基因组环境中发挥作用。而在裂解位点的碱基取代会触发次级产物的出现,这与两步识别和裂解机制一致。这些结果表明,采用一种非常保守的管家酶以适应新的底物,并阐明了CRISPR-Cas系统令人印象深刻的可塑性,使它们能够在特定的基因组环境中发挥作用。而在裂解位点的碱基取代会触发次级产物的出现,这与两步识别和裂解机制一致。这些结果表明,采用一种非常保守的管家酶以适应新的底物,并阐明了CRISPR-Cas系统令人印象深刻的可塑性,使它们能够在特定的基因组环境中发挥作用。
更新日期:2018-02-06
down
wechat
bug