当前位置: X-MOL 学术Chem. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Localized Surface Plasmon Resonance in Semiconductor Nanocrystals
Chemical Reviews ( IF 62.1 ) Pub Date : 2018-02-05 00:00:00 , DOI: 10.1021/acs.chemrev.7b00613
Ankit Agrawal 1 , Shin Hum Cho 1 , Omid Zandi 1 , Sandeep Ghosh 1 , Robert W. Johns 1, 2 , Delia J. Milliron 1
Affiliation  

Localized surface plasmon resonance (LSPR) in semiconductor nanocrystals (NCs) that results in resonant absorption, scattering, and near field enhancement around the NC can be tuned across a wide optical spectral range from visible to far-infrared by synthetically varying doping level, and post synthetically via chemical oxidation and reduction, photochemical control, and electrochemical control. In this review, we will discuss the fundamental electromagnetic dynamics governing light matter interaction in plasmonic semiconductor NCs and the realization of various distinctive physical properties made possible by the advancement of colloidal synthesis routes to such NCs. Here, we will illustrate how free carrier dielectric properties are induced in various semiconductor materials including metal oxides, metal chalcogenides, metal nitrides, silicon, and other materials. We will highlight the applicability and limitations of the Drude model as applied to semiconductors considering the complex band structures and crystal structures that predominate and quantum effects that emerge at nonclassical sizes. We will also emphasize the impact of dopant hybridization with bands of the host lattice as well as the interplay of shape and crystal structure in determining the LSPR characteristics of semiconductor NCs. To illustrate the discussion regarding both physical and synthetic aspects of LSPR-active NCs, we will focus on metal oxides with substantial consideration also of copper chalcogenide NCs, with select examples drawn from the literature on other doped semiconductor materials. Furthermore, we will discuss the promise that LSPR in doped semiconductor NCs holds for a wide range of applications such as infrared spectroscopy, energy-saving technologies like smart windows and waste heat management, biomedical applications including therapy and imaging, and optical applications like two photon upconversion, enhanced luminesence, and infrared metasurfaces.

中文翻译:

半导体纳米晶体中的局部表面等离子体共振

半导体纳米晶体(NCs)中的局部表面等离子体激元共振(LSPR)可通过合成变化的掺杂水平在从可见光到远红外的宽光谱范围内调节导致NC周围共振吸收,散射和近场增强的现象,并且通过化学氧化和还原,光化学控制和电化学控制进行合成后处理。在这篇综述中,我们将讨论控制等离子半导体NC中光物质相互作用的基本电磁动力学,以及通过将胶体合成路线推进到此类NC中而实现的各种独特物理特性的实现。在这里,我们将说明如何在各种半导体材料(包括金属氧化物,金属硫属元素化物,金属氮化物,硅,和其他材料。考虑到占主导地位的复杂能带结构和晶体结构以及非经典尺寸下出现的量子效应,我们将着重介绍Drude模型应用于半导体的适用性和局限性。在确定半导体NCs的LSPR特性时,我们还将强调掺杂剂与主晶格带的杂交以及形状和晶体结构的相互作用的影响。为了说明有关LSPR活性NC的物理和合成方面的讨论,我们将重点研究金属氧化物,同时充分考虑硫族铜的NC,并从其他掺杂半导体材料的文献中选取一些示例。此外,
更新日期:2018-02-05
down
wechat
bug