当前位置: X-MOL 学术Small › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Scalable 2D Mesoporous Silicon Nanosheets for High‐Performance Lithium‐Ion Battery Anode
Small ( IF 13.0 ) Pub Date : 2018-02-05 , DOI: 10.1002/smll.201703361
Song Chen 1 , Zhuo Chen 1 , Xingyan Xu 1 , Chuanbao Cao 1 , Min Xia 1 , Yunjun Luo 1
Affiliation  

Constructing unique mesoporous 2D Si nanostructures to shorten the lithium‐ion diffusion pathway, facilitate interfacial charge transfer, and enlarge the electrode–electrolyte interface offers exciting opportunities in future high‐performance lithium‐ion batteries. However, simultaneous realization of 2D and mesoporous structures for Si material is quite difficult due to its non‐van der Waals structure. Here, the coexistence of both mesoporous and 2D ultrathin nanosheets in the Si anodes and considerably high surface area (381.6 m2 g−1) are successfully achieved by a scalable and cost‐efficient method. After being encapsulated with the homogeneous carbon layer, the Si/C nanocomposite anodes achieve outstanding reversible capacity, high cycle stability, and excellent rate capability. In particular, the reversible capacity reaches 1072.2 mA h g−1 at 4 A g−1 even after 500 cycles. The obvious enhancements can be attributed to the synergistic effect between the unique 2D mesoporous nanostructure and carbon capsulation. Furthermore, full‐cell evaluations indicate that the unique Si/C nanostructures have a great potential in the next‐generation lithium‐ion battery. These findings not only greatly improve the electrochemical performances of Si anode, but also shine some light on designing the unique nanomaterials for various energy devices.

中文翻译:

适用于高性能锂离子电池阳极的可扩展2D介孔硅纳米片

构建独特的介孔2D Si纳米结构以缩短锂离子扩散路径,促进界面电荷转移并扩大电极-电解质界面为将来的高性能锂离子电池提供了令人兴奋的机会。但是,由于硅材料的非范德华结构,很难同时实现二维和介孔结构。在此,Si阳极中介孔和二维超薄纳米片的共存和相当高的表面积(381.6 m 2 g -1)是通过可扩展且经济高效的方法成功实现的。Si / C纳米复合阳极被均质碳层封装后,具有出色的可逆容量,高循环稳定性和出色的倍率性能。特别地,可逆容量达到1072.2毫安汞柱-1在4 A G -1即使经过500次循环。明显的增强可以归因于独特的2D介孔纳米结构和碳封壳之间的协同效应。此外,全电池评估表明,独特的Si / C纳米结构在下一代锂离子电池中具有巨大潜力。这些发现不仅大大改善了硅阳极的电化学性能,而且为设计用于各种能量器件的独特纳米材料提供了一些启示。
更新日期:2018-02-05
down
wechat
bug