当前位置: X-MOL 学术J. Am. Ceram. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Molecular Simulations of the Structure and Thermal Transport of High Alumina Aluminosilicate Molten Core Glass Fiber
Journal of the American Ceramic Society ( IF 3.5 ) Pub Date : 2018-02-14 , DOI: 10.1111/jace.15471
Bennett Greenberg 1 , Stephen H. Garofalini 2
Affiliation  

Correspondence Stephen H. Garofalini, Department of Materials Science and Engineering, Rutgers University, Piscataway, NJ. Email: shg@rutgers.edu Abstract The atomistic structure and phonon transport in aluminosilicate glasses made via an interfacial mixing model of the Molten Core process were studied using molecular dynamics simulations. In the simulations, silica glass was brought in contact with different size alumina crystals (to afford core glasses with 4, 18, 24, 29, and 41 mole% alumina concentrations), followed by a melt-quench process to enable mixing of the phases. The atomistic structure of the resulting glasses and radius of gyration calculations of resultant Al-O-Al connected clusters were evaluated. Variation in the 1-dimensional thermal transport in each glass was also determined and showed that increased alumina concentration in the glasses resulted in increased transport of thermal energy. Results of the structural analyses showed a double peak in the Al-Al pair distribution function, with the short-distance peak indicative of edge-sharing Al-O-Al-O bonding and a longer distance peak of Al-O-Al bonding that is not indicative of edge-sharing structures. The ratio of the first Al-Al peak to the second Al-Al peak varied inversely with the thermal transport behavior. An increased radius of gyration of Al-O-Al connectivity occurred with increasing alumina concentration, providing a mechanism for the increased thermal transport. Nanosegregation was also observed. Interconnectivity between Al ions created isolated Al-O-Al bonded clusters at low alumina concentrations with lower thermal transport than the high alumina glasses, whereas the latter showed a percolated network of Al-O-Al bonds that increased thermal transport.

中文翻译:

高铝铝硅酸盐熔芯玻璃纤维结构和热传递的分子模拟

通讯作者 Stephen H. Garofalini,新泽西州皮斯卡塔韦罗格斯大学材料科学与工程系。电子邮件:shg@rutgers.edu 摘要 使用分子动力学模拟研究了通过熔核过程的界面混合模型制成的铝硅酸盐玻璃中的原子结构和声子传输。在模拟中,石英玻璃与不同尺寸的氧化铝晶体接触(以提供具有 4、18、24、29 和 41 摩尔% 氧化铝浓度的芯玻璃),然后进行熔融淬火工艺以实现各相的混合. 评估了所得玻璃的原子结构和所得 Al-O-Al 连接簇的回转半径计算。还确定了每种玻璃中一维热传输的变化,并表明玻璃中氧化铝浓度的增加导致热能传输的增加。结构分析的结果表明,Al-Al 对分布函数中有一个双峰,短距离峰表示共享边缘的 Al-O-Al-O 键合,而 Al-O-Al 键合的长距离峰表示不表示边缘共享结构。第一个 Al-Al 峰与第二个 Al-Al 峰的比率与热传输行为成反比。随着氧化铝浓度的增加,Al-O-Al 连接的回转半径增加,为增加的热传输提供了一种机制。还观察到纳米偏析。
更新日期:2018-02-14
down
wechat
bug