当前位置: X-MOL 学术Sci. Bull. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Barium isotope cosmochemistry and geochemistry
Science Bulletin ( IF 18.8 ) Pub Date : 2018-01-31 , DOI: 10.1016/j.scib.2018.01.018
Quentin Charbonnier 1 , Frédéric Moynier 2 , Julien Bouchez 1
Affiliation  

While the isotopic variations of barium were reported for the first time fourty years ago, the number of studies on barium isotopes significantly increased only after 2010. Barium isotope anomalies in meteorites have been successfully used to provide constraints about the origin of presolar SiC grains. In carbonaceous chondrites Ba isotope anomalies are indicative of the heterogeneity of the early solar system, possibly resulting from of a later injection of material after the cooling of solar system. Barium isotope fractionation in the same carbonaceous chondrites suggests that a strong magnetic field was present in the innermost part of the early solar system. Barium mass-dependent isotope fractionation has also been detected throughout Earth surface materials. While igneous rocks show limited Ba isotopic variations, relatively large isotopic variations are observed amongst and within soils, rivers, and biological materials. Indeed, plants seem to fractionate Ba isotopes during Ba uptake from soil solutions. Therefore, Ba isotope signatures have the potential to provide clues on the biological cycling of Ba at the Earth surface. In seawater, Ba isotopic variations have been mapped out, and are mainly related to barite precipitation, which is in turn related to organic matter remineralization in the water column. This makes Ba isotopes a potentially powerful tool to reconstruct past ocean productivity, although constraints are still lacking regarding the inputs of dissolved Ba to the oceans by rivers or hydrothermalism.



中文翻译:

钡同位素宇宙化学和地球化学

虽然钡的同位素变化在 40 年前首次被报道,但直到 2010 年以后,对钡同位素的研究数量才显着增加。陨石中的钡同位素异常已成功地用于限制太阳系前 SiC 颗粒的起源。在碳质球粒陨石中,Ba 同位素异常表明早期太阳系的不均匀性,这可能是由于太阳系冷却后后来注入的物质造成的。同一碳质球粒陨石中的钡同位素分馏表明,早期太阳系的最内部存在强磁场。还在整个地球表面材料中检测到钡质量相关的同位素分馏。虽然火成岩显示出有限的 Ba 同位素变化,在土壤、河流和生物材料之间和内部观察到相对较大的同位素变化。事实上,植物似乎在从土壤溶液中吸收 Ba 的过程中分馏出 Ba 同位素。因此,Ba 同位素特征有可能为地球表面 Ba 的生物循环提供线索。在海水中,Ba 同位素变化已被绘制出来,主要与重晶石沉淀有关,而重晶石沉淀又与水柱中的有机质再矿化有关。这使得 Ba 同位素成为重建过去海洋生产力的潜在强大工具,尽管在通过河流或热液作用向海洋输入溶解的 Ba 方面仍然缺乏限制。植物似乎在从土壤溶液中吸收 Ba 的过程中分馏出 Ba 同位素。因此,Ba 同位素特征有可能为地球表面 Ba 的生物循环提供线索。在海水中,Ba 同位素变化已被绘制出来,主要与重晶石沉淀有关,而重晶石沉淀又与水柱中的有机质再矿化有关。这使得 Ba 同位素成为重建过去海洋生产力的潜在强大工具,尽管在通过河流或热液作用向海洋输入溶解的 Ba 方面仍然缺乏限制。植物似乎在从土壤溶液中吸收 Ba 的过程中分馏出 Ba 同位素。因此,Ba 同位素特征有可能为地球表面 Ba 的生物循环提供线索。在海水中,Ba 同位素变化已被绘制出来,主要与重晶石沉淀有关,而重晶石沉淀又与水柱中的有机质再矿化有关。这使得 Ba 同位素成为重建过去海洋生产力的潜在强大工具,尽管在通过河流或热液作用向海洋输入溶解的 Ba 方面仍然缺乏限制。这又与水柱中的有机物再矿化有关。这使得 Ba 同位素成为重建过去海洋生产力的潜在强大工具,尽管在通过河流或热液作用向海洋输入溶解的 Ba 方面仍然缺乏限制。这又与水柱中的有机物再矿化有关。这使得 Ba 同位素成为重建过去海洋生产力的潜在强大工具,尽管在通过河流或热液作用向海洋输入溶解的 Ba 方面仍然缺乏限制。

更新日期:2018-01-31
down
wechat
bug