当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Calcium cobaltate: a phase-change catalyst for stable hydrogen production from bio-glycerol†
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2018-02-01 00:00:00 , DOI: 10.1039/c7ee03301j
Chengxiong Dang 1, 2, 3, 4 , Yuhang Li 1, 2, 3, 4 , Seif M. Yusuf 5, 6, 7, 8 , Yonghai Cao 1, 2, 3, 4 , Hongjuan Wang 1, 2, 3, 4 , Hao Yu 1, 2, 3, 4 , Feng Peng 1, 2, 3, 4 , Fanxing Li 5, 6, 7, 8
Affiliation  

The sorption enhanced steam reforming (SESR) technology has the potential to produce high purity hydrogen by Le Chatelier's principle. However, its practical applicability is limited by sorbent sintering and deactivation at high reaction/decarbonation temperatures. Herein, we propose a novel strategy to enhance the stability of the SESR of glycerol (SESRG), in which misfit layered materials, i.e. calcium cobaltates (CCO), were used as a dual-functional material combining CO2 absorption and catalytic reforming. Differing from the conventional approach of enhancing the robustness of catalysts/sorbents, we exploited the reversible phase change of CCO: Ca3Co4O9 ↔ Co + CaO, during the decarbonation and reaction steps respectively. By doing so, the sintering of the CaO sorbent and the Co catalyst could be suppressed because they were homogenized into CCO on an atomic level in every decarbonation stage. The CCO catalyst displayed a very stable performance for producing high purity H2 through SESRG for up to 120 reaction–decarbonation cycles, without noticeable changes in H2 production and CO2 absorption capacity. In situ XRD and microscopy studies demonstrated the reversible phase transition and the accompanied formation of hierarchical CCO micro-structures that facilitated the catalytic reforming and CO2 absorption, benefited from the complex phase equilibria among different CCO compounds. The results in this study shed light on a new paradigm for the design of materials working at high temperatures thus suffering from serious sintering.

中文翻译:

钴酸钙:一种相变催化剂,可稳定地从生物甘油中制氢

吸附增强蒸汽重整(SESR)技术具有按照勒查特利尔原理生产高纯度氢气的潜力。但是,它的实际适用性受到高反应/脱碳温度下吸附剂的烧结和失活的限制。本文中,我们提出了一种新的策略来增强甘油的SESR稳定性(SESRG),其中错配层状材料钴酸钙(CCO)被用作结合了CO 2吸收和催化重整的双功能材料。与提高催化剂/吸附剂的耐用性的常规方法不同,我们利用了CCO:Ca 3 Co 4 O 9的可逆相变。↔在脱碳和反应步骤中分别添加Co + CaO。通过这样做,可以抑制CaO吸附剂和Co催化剂的烧结,因为它们在每个脱碳阶段均在原子水平上被均质化为CCO。CCO催化剂显示出通过SESRG产生高纯度H 2的性能非常稳定,最多可进行120个反应-脱碳循环,而H 2的产生和CO 2的吸收能力没有明显变化。原位X射线衍射和显微镜研究表明,可逆相变和伴随形成的分层CCO微观结构促进了催化重整和CO 2的形成吸收,得益于不同CCO化合物之间的复杂相平衡。这项研究的结果为高温下工作的材料设计提供了新范式,从而遭受了严重的烧结。
更新日期:2018-02-01
down
wechat
bug