当前位置: X-MOL 学术Acc. Chem. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mechanisms of Degradation and Strategies for the Stabilization of Cathode–Electrolyte Interfaces in Li-Ion Batteries
Accounts of Chemical Research ( IF 18.3 ) Pub Date : 2018-01-31 00:00:00 , DOI: 10.1021/acs.accounts.7b00482
Jordi Cabana 1 , Bob Jin Kwon 1 , Linhua Hu 1
Affiliation  

Undesired reactions at the interface between a transition metal oxide cathode and a nonaqueous electrolyte bring about challenges to the performance of Li-ion batteries in the form of compromised durability. These challenges are especially severe in extreme conditions, such as above room temperature or at high potentials. The ongoing push to increase the energy density of Li-ion batteries to break through the existing barriers of application in electric vehicles creates a compelling need to address these inefficiencies. This goal requires a combination of deep knowledge of the mechanisms underpinning reactivity, and the ability to assemble multifunctional electrode systems where different components synergistically extend cycle life by imparting interfacial stability, while maintaining, or even increasing, capacity and potential of operation. The barriers toward energy storage at high density apply equally in Li-ion, the leading technology in the battery market, and in related, emerging concepts for high energy density, such as Na-ion and Mg-ion, because they also conceptually rely on electroactive transition metal oxides. Therefore, their relevance is broad and the quest for solutions inevitable.

中文翻译:

锂离子电池阴极-电解质界面的降解机理和策略

在过渡金属氧化物阴极和非水电解质之间的界面处发生不希望的反应,以损害耐用性的形式对锂离子电池的性能提出了挑战。这些挑战在极端条件下尤其严峻,例如高于室温或处于高电势下。不断努力提高锂离子电池的能量密度以突破电动汽车中现有的应用障碍,这迫切需要解决这些低效率问题。这个目标需要结合对反应机理的深入了解,以及组装多功能电极系统的能力,其中不同的组件通过赋予界面稳定性,同时保持甚至增加操作的能力和潜力来协同地延长循环寿命。高密度能量存储的障碍同样适用于电池市场的领先技术锂离子电池以及相关的新兴高能量密度概念,例如钠离子和镁离子,因为它们在概念上也依赖电活性过渡金属氧化物。因此,它们的相关性是广泛的,寻求解决方案是不可避免的。
更新日期:2018-01-31
down
wechat
bug