当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries†
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2018-01-29 00:00:00 , DOI: 10.1039/c8ee00239h
Qiaobao Zhang 1, 2, 3, 4, 5 , Huixin Chen 2, 5, 6, 7, 8 , Langli Luo 9, 10, 11, 12, 13 , Bote Zhao 13, 14, 15, 16 , Hao Luo 13, 15, 16, 17 , Xiang Han 2, 5, 8, 18, 19 , Jiangwei Wang 5, 14, 20, 21, 22 , Chongmin Wang 9, 10, 11, 12, 13 , Yong Yang 2, 5, 6, 7, 8 , Ting Zhu 13, 14, 15, 16, 17 , Meilin Liu 13, 14, 15, 16
Affiliation  

Advanced composite electrodes containing multiple active components are often used in lithium-ion batteries for practical applications. The performance of such heterogeneous composite electrodes can in principle be enhanced by tailoring the concurrent reaction dynamics in multiple active components for promoting their collective beneficial effects. However, the potential of this design principle has remained uncharted to date. Here we develop a composite anode of Cu/Si/Ge nanowire arrays, where each nanowire consists of a core of Cu segments and a Si/Ge bilayer shell. This unique electrode architecture exhibited a markedly improved electrochemical performance over the reference Cu/Si systems, demonstrating a stable capacity retention (81% after 3000 cycles at 2C) and doubled specific capacity at a rate of 16C (1C = 2 A g−1). By using in situ transmission electron microscopy and electrochemical testing, we unravel a novel reaction mechanism of dynamic co-lithiation/co-delithiation in the active Si and Ge bilayer, which is shown to effectively alleviate the electrochemically induced mechanical degradation and thus greatly enhance the long-cycle stability of the electrode. Our findings offer insights into a rational design of high-performance lithium-ion batteries via exploiting the concurrent reaction dynamics in the multiple active components of composite electrodes.

中文翻译:

利用活性硅和锗中同时发生的反应动力学来获得高性能锂离子电池

实际应用中,通常在锂离子电池中使用包含多种活性成分的高级复合电极。原则上,可以通过在多个活性组分中调整同时发生的反应动力学以促进其共同的有益效果来增强这种异质复合电极的性能。但是,迄今为止,这种设计原理的潜力仍然未知。在这里,我们开发了一个Cu / Si / Ge纳米线阵列的复合阳极,其中每条纳米线都由一个Cu段的芯和一个Si / Ge双层壳组成。这种独特的电极体系结构与参考Cu / Si系统相比具有显着改善的电化学性能,显示出稳定的容量保持率(在2C下进行3000次循环后为81%),并且在16C的速率下比容量增加了一倍(1C = 2 A g -1)。通过使用原位透射电子显微镜和电化学测试,我们揭示了活性Si和Ge双层中动态共锂化/共脱锂的新反应机理,表明该机理可有效缓解电化学诱导的机械降解,从而大大提高了电化学性能。电极的长周期稳定性。我们的发现通过利用复合电极的多个活性成分中的并发反应动力学,为高性能锂离子电池的合理设计提供了见识。
更新日期:2018-01-29
down
wechat
bug