当前位置: X-MOL 学术Acc. Chem. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Role of Cations on the Performance of Lithium Ion Batteries: A Quantitative Analytical Approach
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2018-01-30 00:00:00 , DOI: 10.1021/acs.accounts.7b00523
Sascha Nowak 1 , Martin Winter 1, 2
Affiliation  

Lithium ion batteries are nowadays the state-of-the-art power sources for portable electronic devices and the most promising candidate for energy storage in large-size batteries, e.g., pure and hybrid vehicles. However, the degradation of the cell components minimizes both storage and operation lifetime (calendar and cycle life), which is called aging. Due to the numerous different aging effects, in either the single constituents or their interactions with each other, many reports about methodologies and techniques, both electrochemical and analytical, can be found in the literature. However, quantitative data about the degradation effects were seldom stated. One important effect is the cation distribution and migration during operation. Metal dissolution and metal migration of the cathode and the corresponding deposition of these metals on the graphitic anode are known harmful degradation effects, especially for the formed solid electrolyte interphase on the surface of the anode. Depending on the applied cell chemistries and therefore the cathode material, different mechanisms were reported so far. For lithium manganese oxide based cells, the acidification of the electrolyte due to composition of the conduction salt is attributed as the main source of metal migration. Due to subsequent loss of manganese from the cathode, the overall performance of the cell is seriously impaired. Based on the obtained observations, this degradation mechanism was adapted to lithium nickel cobalt manganese based cells as main cause of the capacity fading. However, with the help a developed total X-ray fluorescence method and additional surface and electrolyte investigations, the proposed HF based mechanism was disproven. Instead, the migration was directly associated with material defects or mechanical spalling of the particles. Furthermore, with the obtained quantitative data of the migrated transition metals on the anode and separator, the contribution on the capacity fade was determined. It ranged only the ‰ region and could therefore be excluded as the main source of the capacity in these lithium ion batteries. Nevertheless, the oxidation state of the cations is hardly accessible; but would provide further information about the exact migrating mechanisms.

中文翻译:

阳离子对锂离子电池性能的作用:定量分析方法

如今,锂离子电池已成为便携式电子设备的最新电源,并且是大型电池(例如,纯电动和混合动力汽车)中储能的最有希望的候选者。但是,电池组件的退化会最大程度地缩短存储和运行寿命(日历寿命和循环寿命),这称为老化。由于多种老化效应,无论是单一成分还是它们彼此之间的相互作用,都可以在文献中找到许多有关方法和技术的报道,包括电化学和分析方法。但是,很少有关于降解作用的定量数据。一个重要的影响是操作过程中阳离子的分布和迁移。已知阴极的金属溶解和金属迁移以及这些金属在石墨阳极上的相应沉积是已知的有害降解作用,尤其是对于在阳极表面上形成的固体电解质界面而言。迄今为止,取决于所应用的电池化学以及因此的阴极材料,报道了不同的​​机理。对于基于锂锰氧化物的电池,归因于导电盐成分的电解质酸化被认为是金属迁移的主要来源。由于随后锰从阴极损失,因此严重损害了电池的整体性能。基于获得的观察结果,该降解机理适用于锂镍钴锰基电池,这是容量下降的主要原因。然而,借助已开发的全X射线荧光方法以及其他表面和电解质研究,该拟议的基于HF的机理得到了证实。相反,迁移与颗粒的材料缺陷或机械剥落直接相关。此外,利用获得的在阳极和隔板上迁移的过渡金属的定量数据,确定了对容量衰减的贡献。它仅在‰区域内变化,因此可以作为这些锂离子电池容量的主要来源而排除在外。然而,阳离子的氧化态很难接近。但会提供有关确切迁移机制的更多信息。迁移与颗粒的材料缺陷或机械剥落直接相关。此外,利用获得的在阳极和隔板上迁移的过渡金属的定量数据,确定了对容量衰减的贡献。它仅在‰区域内变化,因此可以作为这些锂离子电池容量的主要来源而排除在外。然而,阳离子的氧化态很难接近。但会提供有关确切迁移机制的更多信息。迁移与颗粒的材料缺陷或机械剥落直接相关。此外,利用获得的在阳极和隔板上迁移的过渡金属的定量数据,确定了对容量衰减的贡献。它仅在‰区域内变化,因此可以作为这些锂离子电池容量的主要来源而排除在外。然而,阳离子的氧化态很难接近。但会提供有关确切迁移机制的更多信息。它仅在‰区域内变化,因此可以作为这些锂离子电池容量的主要来源而排除在外。然而,阳离子的氧化态很难接近。但会提供有关确切迁移机制的更多信息。它仅在‰区域内变化,因此可以作为这些锂离子电池容量的主要来源而排除在外。然而,阳离子的氧化态很难接近。但会提供有关确切迁移机制的更多信息。
更新日期:2018-01-30
down
wechat
bug