当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Strong spin-photon coupling in silicon
Science ( IF 56.9 ) Pub Date : 2018-01-25 , DOI: 10.1126/science.aar4054
N. Samkharadze 1 , G. Zheng 1 , N. Kalhor 1 , D. Brousse 2 , A. Sammak 2 , U. C. Mendes 3 , A. Blais 3, 4 , G. Scappucci 1 , L. M. K. Vandersypen 1
Affiliation  

Coupling light to single spins To help develop quantum circuits, much effort has been directed toward achieving the strong-coupling regime by using gate-defined semiconductor quantum dots. Potentially, the magnetic dipole, or spin, of a single electron for use as a qubit has advantages over charge-photon coupling owing to its longer lifetime. Samkharadze et al. hybridized the electron spin with the electron charge in a double silicon quantum dot. This approach yielded strong coupling between the single electron spin and a single microwave photon, providing a route to scalable quantum circuits with spin qubits. Science, this issue p. 1123 Strong coupling is induced between a single electron spin and a single photon. Long coherence times of single spins in silicon quantum dots make these systems highly attractive for quantum computation, but how to scale up spin qubit systems remains an open question. As a first step to address this issue, we demonstrate the strong coupling of a single electron spin and a single microwave photon. The electron spin is trapped in a silicon double quantum dot, and the microwave photon is stored in an on-chip high-impedance superconducting resonator. The electric field component of the cavity photon couples directly to the charge dipole of the electron in the double dot, and indirectly to the electron spin, through a strong local magnetic field gradient from a nearby micromagnet. Our results provide a route to realizing large networks of quantum dot–based spin qubit registers.

中文翻译:

硅中的强自旋光子耦合

将光耦合到单自旋 为了帮助开发量子电路,通过使用门定义的半导体量子点来实现强耦合机制已经做了很多努力。潜在地,用作量子位的单个电子的磁偶极子或自旋由于其更长的寿命而比电荷-光子耦合具有优势。萨姆哈拉泽等人。将电子自旋与双硅量子点中的电子电荷混合。这种方法在单电子自旋和单个微波光子之间产生了强耦合,为具有自旋量子位的可扩展量子电路提供了途径。科学,这个问题 p。1123 单个电子自旋和单个光子之间产生强耦合。硅量子点中单自旋的长相干时间使这些系统对量子计算极具吸引力,但如何扩大自旋量子位系统仍然是一个悬而未决的问题。作为解决这个问题的第一步,我们展示了单个电子自旋和单个微波光子的强耦合。电子自旋被捕获在硅双量子点中,而微波光子则存储在片上高阻抗超导谐振器中。腔光子的电场分量直接耦合到双点中电子的电荷偶极子,并通过来自附近微磁体的强局部磁场梯度间接耦合到电子自旋。我们的结果为实现基于量子点的自旋量子位寄存器的大型网络提供了一条途径。我们展示了单个电子自旋和单个微波光子的强耦合。电子自旋被捕获在硅双量子点中,而微波光子则存储在片上高阻抗超导谐振器中。腔光子的电场分量直接耦合到双点中电子的电荷偶极子,并通过来自附近微磁体的强局部磁场梯度间接耦合到电子自旋。我们的结果为实现基于量子点的自旋量子位寄存器的大型网络提供了一条途径。我们展示了单个电子自旋和单个微波光子的强耦合。电子自旋被捕获在硅双量子点中,而微波光子则存储在片上高阻抗超导谐振器中。腔光子的电场分量直接耦合到双点中电子的电荷偶极子,并通过来自附近微磁体的强局部磁场梯度间接耦合到电子自旋。我们的结果为实现基于量子点的自旋量子位寄存器的大型网络提供了一条途径。并通过来自附近微磁体的强局部磁场梯度间接传递到电子自旋。我们的结果为实现基于量子点的自旋量子位寄存器的大型网络提供了一条途径。并通过来自附近微磁体的强局部磁场梯度间接传递到电子自旋。我们的结果为实现基于量子点的自旋量子位寄存器的大型网络提供了一条途径。
更新日期:2018-01-25
down
wechat
bug