当前位置: X-MOL 学术Acc. Chem. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2018-01-24 00:00:00 , DOI: 10.1021/acs.accounts.7b00143
Chan Cao 1 , Yi-Tao Long 1
Affiliation  

Nanopore sensing is developing into a powerful single-molecule approach to investigate the features of biomolecules that are not accessible by studying ensemble systems. When a target molecule is transported through a nanopore, the ions occupying the pore are excluded, resulting in an electrical signal from the intermittent ionic blockade event. By statistical analysis of the amplitudes, duration, frequencies, and shapes of the blockade events, many properties of the target molecule can be obtained in real time at the single-molecule level, including its size, conformation, structure, charge, geometry, and interactions with other molecules. With the development of the use of α-hemolysin to characterize individual polynucleotides, nanopore technology has attracted a wide range of research interest in the fields of biology, physics, chemistry, and nanoscience. As a powerful single-molecule analytical method, nanopore technology has been applied for the detection of various biomolecules, including oligonucleotides, peptides, oligosaccharides, organic molecules, and disease-related proteins.

中文翻译:

生物纳米孔:电化学单分子分析的受限空间。

纳米孔传感正在发展成为一种功能强大的单分子方法,以研究通过研究集成系统无法访问的生物分子的特征。当目标分子通过纳米孔传输时,占据孔的离子被排除在外,导致间歇性离子封锁事件产生电信号。通过对封锁事件的幅度,持续时间,频率和形状进行统计分析,可以在单分子水平上实时获得靶分子的许多特性,包括其大小,构象,结构,电荷,几何形状和与其他分子的相互作用。随着使用α-溶血素来表征单个多核苷酸的发展,纳米孔技术已在生物学,物理学,化学,和纳米科学。作为一种强大的单分子分析方法,纳米孔技术已用于检测各种生物分子,包括寡核苷酸,肽,寡糖,有机分子和与疾病相关的蛋白质。
更新日期:2018-01-24
down
wechat
bug