当前位置: X-MOL 学术Space Sci. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Atmosphere Impact Losses
Space Science Reviews ( IF 9.1 ) Pub Date : 2018-01-23 , DOI: 10.1007/s11214-018-0471-z
Hilke E. Schlichting , Sujoy Mukhopadhyay

Determining the origin of volatiles on terrestrial planets and quantifying atmospheric loss during planet formation is crucial for understanding the history and evolution of planetary atmospheres. Using geochemical observations of noble gases and major volatiles we determine what the present day inventory of volatiles tells us about the sources, the accretion process and the early differentiation of the Earth. We further quantify the key volatile loss mechanisms and the atmospheric loss history during Earth’s formation. Volatiles were accreted throughout the Earth’s formation, but Earth’s early accretion history was volatile poor. Although nebular Ne and possible H in the deep mantle might be a fingerprint of this early accretion, most of the mantle does not remember this signature implying that volatile loss occurred during accretion. Present day geochemistry of volatiles shows no evidence of hydrodynamic escape as the isotopic compositions of most volatiles are chondritic. This suggests that atmospheric loss generated by impacts played a major role during Earth’s formation. While many of the volatiles have chondritic isotopic ratios, their relative abundances are certainly not chondritic again suggesting volatile loss tied to impacts. Geochemical evidence of atmospheric loss comes from the He3/22Ne${}^{3}\mathrm{He}/{}^{22}\mathrm{Ne}$, halogen ratios (e.g., F/Cl) and low H/N ratios. In addition, the geochemical ratios indicate that most of the water could have been delivered prior to the Moon forming impact and that the Moon forming impact did not drive off the ocean. Given the importance of impacts in determining the volatile budget of the Earth we examine the contributions to atmospheric loss from both small and large impacts. We find that atmospheric mass loss due to impacts can be characterized into three different regimes: 1) Giant Impacts, that create a strong shock transversing the whole planet and that can lead to atmospheric loss globally. 2) Large enough impactors (mcap≳2ρ0(πhR)3/2$m_{\mathit{cap}} \gtrsim \sqrt{2} \rho_{0} (\pi h R)^{3/2}$, rcap∼25km$r_{\mathit{cap}}\sim25~\mbox{km}$ for the current Earth), that are able to eject all the atmosphere above the tangent plane of the impact site, where h$h$, R$R$ and ρ0$\rho_{0}$ are the atmospheric scale height, radius of the target, and its atmospheric density at the ground. 3) Small impactors (mmin>4πρ0h3$m_{\mathit{min}}>4 \pi\rho_{0} h^{3}$, rmin∼1km$r_{\mathit {min}}\sim 1~\mbox{km}$ for the current Earth), that are only able to eject a fraction of the atmospheric mass above the tangent plane. We demonstrate that per unit impactor mass, small impactors with rmin

中文翻译:

大气影响损失

确定类地行星上挥发物的来源并量化行星形成过程中的大气损失对于了解行星大气的历史和演化至关重要。通过对稀有气体和主要挥发物的地球化学观测,我们确定了当今挥发物清单告诉我们的有关地球来源、吸积过程和早期分化的信息。我们进一步量化了地球形成过程中关键的挥发性损失机制和大气损失历史。挥发物在整个地球的形成过程中被吸积,但地球早期的吸积历史是不稳定的。尽管深部地幔中的星云 Ne 和可能的 H 可能是这种早期吸积的指纹,但大部分地幔不记得这个暗示在吸积过程中发生了挥发性损失的特征。由于大多数挥发物的同位素组成是球粒状的,目前挥发物的地球化学没有显示出流体动力学逃逸的证据。这表明撞击产生的大气损失在地球形成过程中发挥了重要作用。虽然许多挥发物具有球粒状同位素比率,但它们的相对丰度肯定不是球粒状的,这表明挥发物损失与撞击有关。大气损失的地球化学证据来自 He3/22Ne${}^{3}\mathrm{He}/{}^{22}\mathrm{Ne}$、卤素比(例如 F/Cl)和低 H/ N 比率。此外,地球化学比率表明,大部分水可能在月球形成撞击之前就已被输送,月球形成撞击并未将海洋驱逐出去。鉴于影响在确定地球波动性收支方面的重要性,我们研究了小型和大型影响对大气损失的贡献。我们发现由于撞击造成的大气质量损失可以分为三种不同的情况:1) 巨大撞击,它在整个地球上产生强烈的冲击,并可能导致全球大气损失。2) 足够大的撞击器 (mcap≳2ρ0(πhR)3/2$m_{\mathit{cap}} \gtrsim \sqrt{2} \rho_{0} (\pi h R)^{3/2}$, rcap∼25km$r_{\mathit{cap}}\sim25~\mbox{km}$(对于当前地球),能够喷射撞击点切平面上方的所有大气,其中 h$h$, R$R$ 和 ρ0$\rho_{0}$ 是大气标高、目标半径及其地面大气密度。3) 小撞击器 (mmin>4πρ0h3$m_{\mathit{min}}>4 \pi\rho_{0} h^{3}$, rmin∼1km$r_{\mathit {min}}\sim 1~\mbox{km}$ 对于当前地球),它们只能在切平面上方喷射大气质量的一小部分。我们证明了每单位撞击器质量,具有 rmin 的小撞击器
更新日期:2018-01-23
down
wechat
bug