当前位置: X-MOL 学术ACS Photonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Self-Arranged Periodic Nanovoids by Ultrafast Laser-Induced Near-Field Enhancement
ACS Photonics ( IF 6.5 ) Pub Date : 2018-01-20 00:00:00 , DOI: 10.1021/acsphotonics.7b01438
Xxx Sedao 1 , Anthony Abou Saleh 1 , Anton Rudenko 1 , Thierry Douillard 2 , Claude Esnouf 2 , Stéphanie Reynaud 1 , Claire Maurice 3 , Florent Pigeon 1 , Florence Garrelie 1 , Jean-Philippe Colombier 1
Affiliation  

The know-how of periodic nanostructuring at tens of nanometers scale is crucial for surface engineering, and the understanding of the physical mechanism underlying it remains of fundamental importance. The fact that ultrafast laser irradiation enables formation of nanostructures with dimensions far below the diffraction limit questions the triggering events. Optically, local near-field enhancement is supposed to be responsible for initial redistribution of the electromagnetic field, while the role of periodic thermomechanical dynamics in this swift and strongly confined regime has not been elucidated. By revealing the periodic nanovoids trapped under the surface as well as nanocavities emerging at the surface, we demonstrate that they are behind the formation of high spatial frequency structures. Driven far beyond equilibrium by an ultrashort laser pulse, the system experiences a phase transition and a cavitation process as a source of punctual nanorelief. The kinetics are probed and evaluated by an original strategy combining double-pulse irradiation and a hydrodynamic modeling approach. The surface self-arrangement mechanism addressed in this work opens the route to further breakthrough in geometric reduction of nanopattern dimensions.

中文翻译:

超快激光诱导的近场增强自排列的周期性纳米空隙。

数十纳米规模的周期性纳米结构技术知识对于表面工程至关重要,因此了解其背后的物理机制仍然至关重要。超快激光辐照能够形成尺寸远低于衍射极限的纳米结构这一事实对触发事件提出了质疑。从光学上讲,局部近场增强被认为是电磁场的初始重新分布的原因,而周期性热力学动力学在这种迅速而严格的局限性中的作用尚未阐明。通过揭示被困在表面之下的周期性纳米空隙以及在表面出现的纳米腔,我们证明了它们落后于高空间频率结构的形成。该系统由超短激光脉冲驱动,远远超出平衡,因此会经历相变和空化过程,成为点状纳米浮雕的来源。通过结合双脉冲辐照和流体动力学建模方法的原始策略对动力学进行探测和评估。在这项工作中解决的表面自我安排机制开辟了进一步突破纳米图案尺寸几何尺寸突破的途径。
更新日期:2018-01-20
down
wechat
bug